Electron Muon Ranger (EMR) Commissioning

François Drielsma on behalf of the EMR Group

University of Geneva

February 9, 2015

3. 3

- N

< 4 → <

EMR commissioning time line

- < September 2013
 - \rightarrow Construction of the detector in Geneva
 - \rightarrow Commissioned with cosmic data, no dead channels
- End of September 2013
 - \rightarrow Installation of the EMR in the MICE
 - \rightarrow Hardware and software integrity tested with cosmic DAQ

October 2013

 \rightarrow 3-4 weeks Step I beam DAQ

March 2014

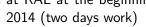
 \rightarrow Detector's 2832 channels fully calibrated with cosmics (Step I)

October 2014

- \rightarrow EMR readout hardware extensively upgraded
- \rightarrow Commissioning of the detector after the upgrade (Step IV)

글 > - + 글 >

Single Anode PMT replacement


Ageing Philips XP2972 :

- $\bullet~{\rm Sensitivity:}~\sim 65~\mu{\rm A}/{\rm Im}$
- Gain: 3×10^6
- Time spread: $\sim 800~{\rm ps}$
- QE: 14.5 %
- ightarrow 30 years old
- \rightarrow Degraded photocathode
- \rightarrow Reduction of secondary emissions at RAL at the beginning of October
- \rightarrow Gain loss
- \rightarrow Spurious pulses

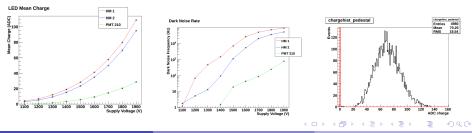
New Hamamatsu R6427 :

- Sensitivity: $\sim 100~\mu {\rm A/Im}$
- Gain: 5×10^6
- $\bullet~{\rm Time~pread}:~\sim 500~{\rm ps}$
- QE: 24 %
- ightarrow 56 PMTs (8 spares)
- \rightarrow Change done by UniGe technicians

(日) (同) (三) (三)

SAPMT implementation

Old set up



Comparaison between old and new SAPMTs

Measured mean charge for MIP signals:

- acquisition of 150k MIP-like signals in the range (1100-1900)V
- measurement of the mean charge for each setting
- $\rightarrow \overline{Q_{Hm}} \gg \overline{Q_{Ph}}$ over the whole range Measured level of dark noise:
 - recording of the DN frequency over 5 minutes in the same range
 - measurement of the average DN frequency for each setting
- \rightarrow DN 2 orders of magnitude higher for Hamamatsu PMTs
- \rightarrow Not to worry, as the DN/Signal separation is ensured

New EMR Elements Installation

New elements:

- 47 U rack to replace current one
- AC fan system (back of the rack, top of the rack, EMR box)
- Remote controlled AC power supply
- HVPSU (photomultipliers)
- LVPSU (trigger distribution boards, LED driver, fans)
- New VME (and NIM) crate(s)

Implementation:

- New design and layout approval (RAL) (✓)
- Installation of remote control switch, connection to grid (RAL) (\checkmark)
- Rack repackaging (UniGe) (✓)
- Cables rewiring (UniGe) (✓)
- Test and commissioning (UniGe) (✓)
 - \rightarrow Finalized after the upgrade of the SAPMT

Issues encountered after restarting

PROBLEM	SOLUTION
1 VHDC fails to configure its FEBs	Spare cable used (✓)
New HVPSU won't start	Controller fixed by CAEN (\checkmark)
LED LV channel malfunctioning	New LVPSU ordered (🗡)
Cosmic DAQ code bugging	Fixed on site (✓)
2 very noisy FEBs (planes 9, 10)	HV tuned down (✓/X)
1 of the new SAPMT down	Needs to be replaced (×)

3

Image: A mathematical states and a mathem

Cosmic data taking

After fixing the issues encountered after restarting, a first round a cosmic data was taken in January. The following configuration was used:

- All the boards, fans and crates were on at nominal voltage
- All the SAPMT set to 1500V
- All the MAPMT set to 700V, except 2 at 680V \rightarrow 2 noisy FEBs
- Spill generated by the software, every 2.5ms, for 2ms $\rightarrow \sim 1$ in 10 spill has a trigger
- Particle trigger generated by a pair of coincidences between two adjacent planes (14&&15) || (30&&31)
 → 4 trigger planes record no charge information
- 100k events recorded to check stability

Cosmic muon event

09 Bar ID ******************* ا سالستا م ĩ٥ Plane ID Plane ID

Time over Threshold [X planes]

Time over Threshold [Y planes]

New SAPMT performance

0.9

0.7

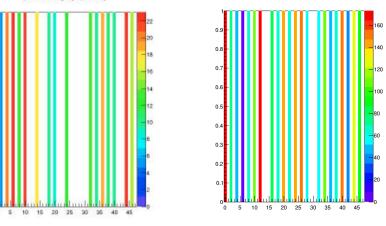
0.6

0.5

0,4

0.3

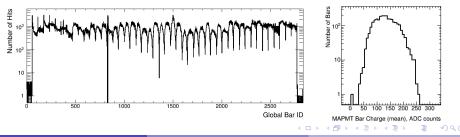
0.2


0.1

Old SAPMT

plane charge [X planes]

plane charge [X planes]



- \rightarrow Much higher signals recorded in the new SAPMTs
- ightarrow No more charge losses as we had before (no signal in some planes)

EMR charge calibration

A calibration program exists and need enough cosmic data:

- **calibration** uses cosmic data to evaluate the photomultipliers irregularities and give a parameter for each channel
 - ran in March 2014 and correction map included in MAUS (Step I)
 - ▶ 300k (~ 1 week) cosmic trigger needed in the EMR
 - Measurement of the mean charge for each bar i in a plane j, $\overline{Q_{ij}}$
 - ▶ Calculation of the correction factor $\epsilon_{ij} = \overline{Q_{ij}}/\overline{Q}$, with \overline{Q} global average
- $\rightarrow\,$ More cosmic data needs to be taken after the SAPMT replacement (no beam time required to produce the calibration constants)

EMR status summary

EMR hardware upgrade completed

- SAPMT commissioned, upcoming MICE-DET-NOTE (\checkmark)
- New 47U rack, network operated power switch ightarrow functional (\checkmark)
- New HVPSU ightarrow controller fixed by CAEN (\checkmark)
- New LVPSU ightarrow functional with the exception of the LED driver (\checkmark)
- New CAEN VME crate \rightarrow functional (\checkmark)
- VHDC replacement ightarrow operational configuration (\checkmark)
- $\bullet\,$ New patch panel and environmental sensors \to functional ($\checkmark\,$) Outstanding issues
 - Investigate the noisy FEBs, make some spares (X)
 - Replace the faulty SAPMT (X) \rightarrow this week
 - Take enough data and produce the calibration constants ϵ_{ij} (X)

Step IV readiness? No problem in sight.