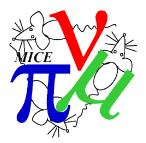
Validating Magnets Using Beam

Chris Rogers, ASTeC, Rutherford Appleton Laboratory

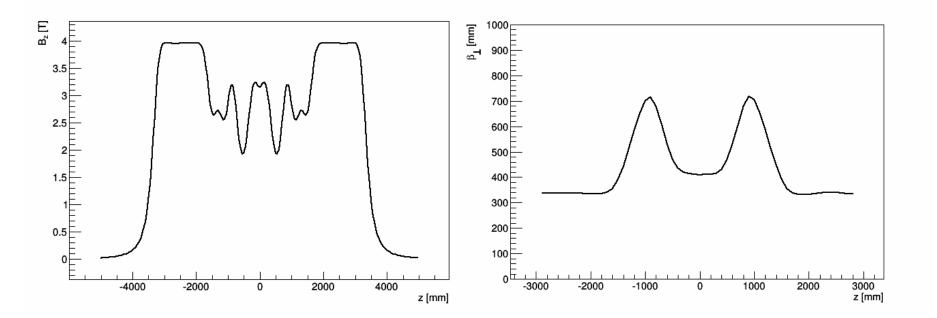
Validating Magnets Using Beam


- How do we validate the magnets are performing as expected
 - Beam is the final arbiter
- Classes of errors
 - Alignment between modules
 - Alignment within a module
 - Model of each coil (number of turns, current, etc)
 - Iron shielding model
 - Hysteresis effects
 - Anything else?
- Coil model and alignment within a module -> field mapping
 - We should try to make a cross-check
- Focus here is alignment between modules
 - Will need to think about the other things
- Assume trackers have been aligned to each other but not to the solenoids
 - Thank you, alignment fairies!

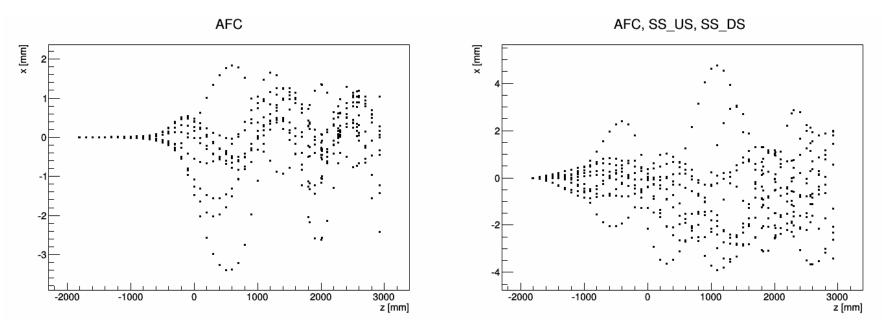
Measuring Module Alignment

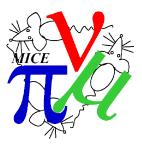
- How do we measure/check that we aligned the modules properly?
 - Standard problem in accelerators
- "Beam based alignment" standard accelerator technique
 - Vary the current in selected coils
 - Measure beam position upstream and downstream of a magnet
 - Watch the beam wander
 - Deduce the misalignment
- We have fantastic diagnostics, but:
 - While we are doing an alignment, may be prudent not to use momentum information
 - Big intrinsic momentum spread makes the measurement difficult
 - Reduce using a time cut in the TOF, consider only central pixels
- We have 5 position measurement planes U/S and D/S
- We have single particle measurements
- Assume alignment is independent of coil currents

Observables

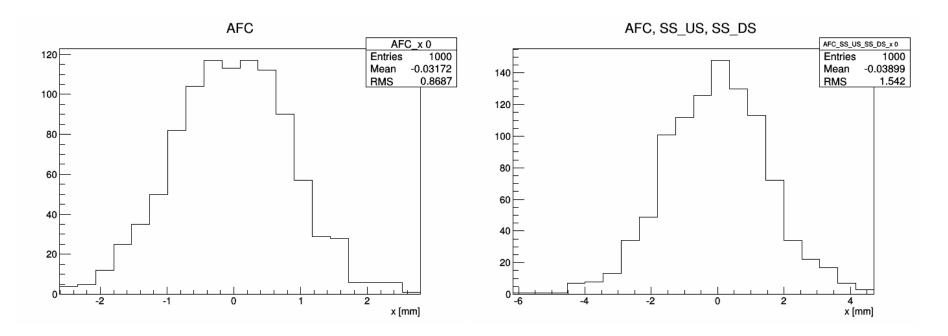


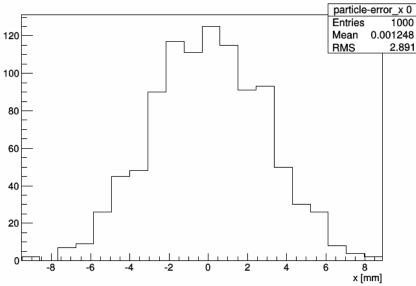
- Misalignment comes in a variety of forms
 - Tilt looks like a dipole field in the magnet body => pt kick
 - Offset looks like a dipole field in the magnet fringe => pt kick
 - Longitudinal displacement moves the focal point of the magnet
- What is our observable?
 - We can see a displacement at the tracker
 - Use upstream tracker and downstream tracker
 - Focus on position data
 - Don't want to assume momentum reconstruction

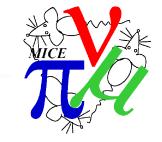

Current Settings


MICE

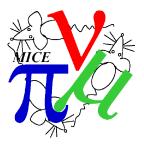
- What current settings?
 - Consider deviations from some "baseline"
 - "Baseline" should be solenoid mode
 - Choose M1: 129 A/mm2 M2: 120 A/mm2 FC: 60 A/mm2
 - Note these are Rogers solenoid mode settings (not "official")

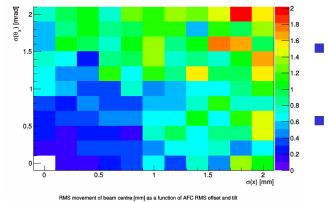


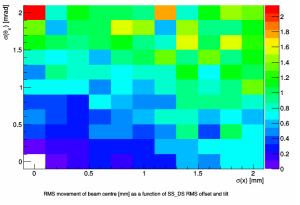

- Kick off axial particle at upstream tracker reference plane (TRP)
- Include 10 sets of random tilts/offsets on modules
 - Normally distributed
 - $\sigma(x), \sigma(y), \sigma(z) = 1 \text{ mm}$
 - $\sigma(\theta_x), \sigma(\theta_y) = 1 \text{ mrad}$
- What is the kick that is introduced?

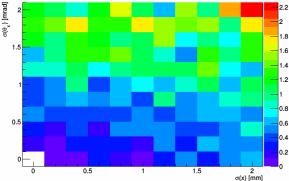


- Run 1000 random tilts/offsets
- What is the displacement of axial particle at downstream TRP?
 - ~ mm, i.e. small but readily measurable

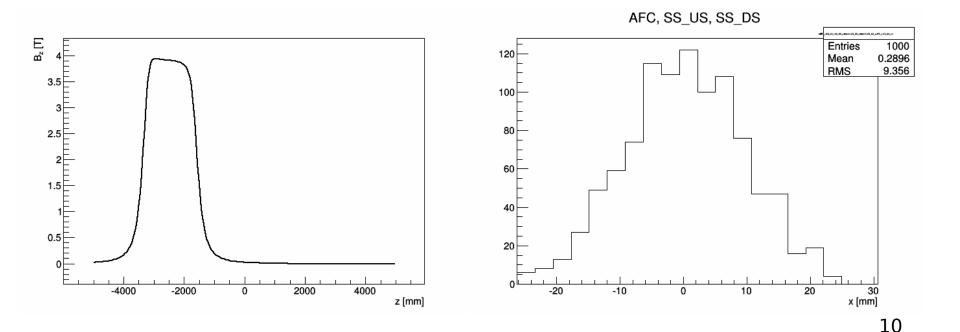


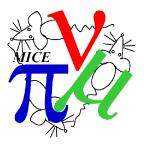




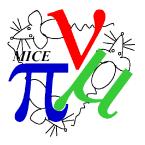

- What about including some measurement error?
- Assume knowledge of particle angular deviation ~ 10 mrad
- Assume knowledge of particle position ~ 0.5 mm
- Gives typical position spread at downstream TRP ~ 3 mm
 - Measurement of angular deviation at US TRP probably dominates the measurement
 - What about pz measurement?
- Nb: there are few windows which are not taken into account here
- Nb: things like hysteresis may introduce a systematic error 8

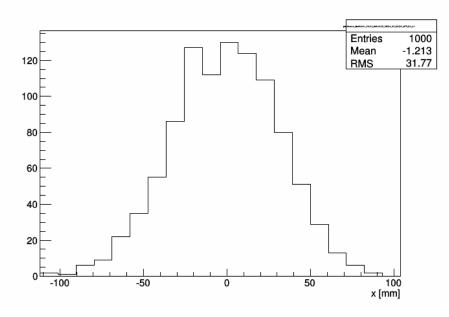
RMS movement of beam centre [mm] as a function of SS_US RMS offset and tilt

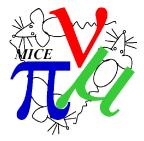


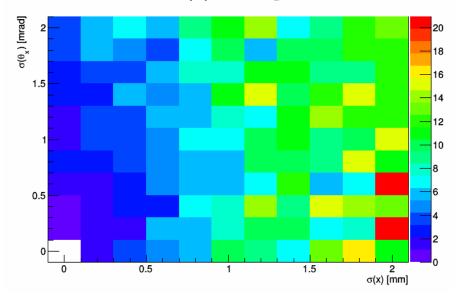

Move a module

- Align everything else perfectly
- What is the dependence of downstream position of an axial particle on tilt, offset?
 - Sample size is only 10 axial mu per grid point
- Note that we have a more symmetric situation if we measure angle downstream as well
 - Not yet considered that


Step IV (SS_US alignment)


- Consider powering only one magnet
 - e.g. switch off AFC, SS_DS, M1_US, M2_US
 - Isolate alignment of a single magnet
 - Non-linear effects from iron, etc may look different
- Now offset at downstream TRP looks more like ~9 mm


Step IV (SS_US alignment)

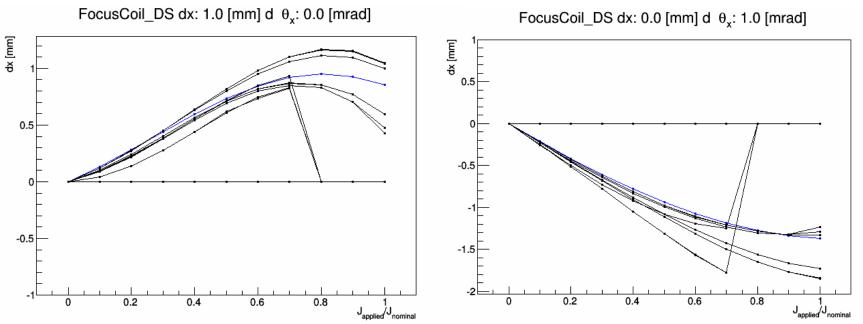


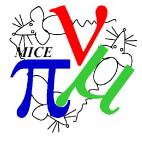
- But measurement error at upstream introduces a bigger spread in downstream positions
 - We are more sensitive to measurement error at upstream

Step IV (SS_US alignment)

RMS movement of beam centre [mm] as a function of SS_US RMS offset and tilt

- Sensitive to transverse offsets
- Less sensitive to tilts

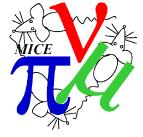

Iron Stuff



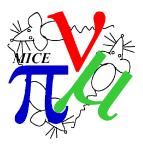
- Effect of 5e-4 transverse field gives ~ 5-6 mm transverse kick to the beam
 - Supported by back of envelope calculation
- Obviously a worst case
 - Guess too high estimate of transverse kick by factor 5

Scaling currents


- What current settings?
 - Consider deviations from the baseline settings
 - Scale FC down
 - Look at movement of beam centre

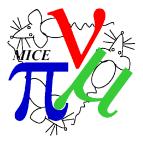

Thinking about algorithms

- What is the algorithm we use?
- Multiparameter minimisation
 - Fix currents, apply minimisation
 - Minimise chi2 of upstream tracker propagated to downstream tracker
 - 3 modules * 5 parameters = 15 parameter fit
 - Many data points, it may work
- Single magnet powered
 - Power one magnet, apply minimisation
 - 5 parameter fit, many data points, it should work
 - But effects due to non-linearities may dominate
- Scale magnet power
 - Move current on one magnet up and down, look at movement of beam centre
 - Should be possible to use individual tracks, but I haven't thought how
 - 5 parameter fit, not many data points, it may work
 - Effects due to non-linearities may be less significant



Alignment between Modules

- What is the algorithm we use?
- Multiparameter minimisation
 - Fix currents, apply minimisation
 - Minimise chi2 of upstream tracker propagated to downstream tracker
 - 3 modules * 5 parameters = 15 parameter fit
 - Many data points, it may work
- Single magnet powered
 - Power one magnet, apply minimisation
 - 5 parameter fit, many data points, it should work
 - But effects due to non-linearities may dominate
 - e.g. effect of iron is likely to be different if the field is in the linear regime
- Scale magnet power
 - Move current on one magnet up and down, look at movement of beam centre
 - Should be possible to use individual tracks, but I haven't thought how
 - 5 parameter fit, not many data points, it may work
 - Effects due to non-linearities may be less significant



Effect of Iron/Non-linearities

- Open question about how we model iron
 - At the moment we need to hand current settings to Holge
 - Holge builds a field map in OPERA/whatever
- This is not really manageable
 - Need a reasonable model for mapping currents to field maps
 - E.g. Enge model, what are the parameters?
 - Need to validate that model somehow

Job List

- Analysis routine
 - Develop analysis algorithm
 - Depends on global track fitting...
- Batch MC
 - Set up a "typical" misalignment
 - Run settings as per previous slide
 - Attempt to recover misalignments including error
- Is that as far as we go in MC?
 - Do we want to try to model large misalignments?
 - Do we want to try to model hysteresis/non-linearity?
 - Do we want to try to do an uber-statistics to get the errors?
 - Probably won't have time
- Data taking starts October...