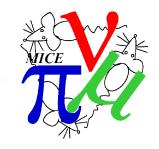
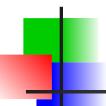

XBOA – offline analysis tool

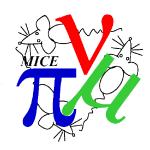
Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory



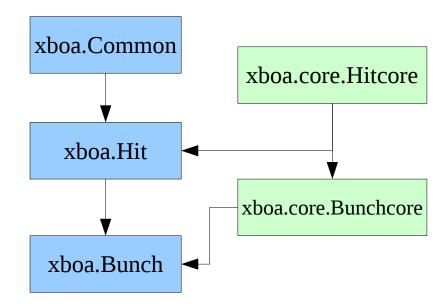
Overview

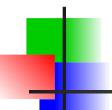


- Analysis computational needs
 - Phase space analyses
 - Emittance, beta functions, etc
 - Beam selection
 - Statistical reweighting, etc
 - General analysis stuff
 - Wrappers and add-ons to ROOT
 - Track matching handled by "Global reconstruction" MAUS package
 - Reconstruction of detector handled by MAUS
- Plan is to use tool xboa driven by Rogers
 - Targeted at python
 - With C++ backend for speed
 - Not as fast as ecalc9f
 - But more versatile


XBOA

- G4MICE Analysis package
 - Developed by Rogers as part of graduate studies
 - Needed a refactor
- XBOA
 - Developed to support Neutrino Factory design study
 - Developed outside of G4MICE framework
 - G4MICE was dying
 - Aim to make "plot emittance vs z" type needs easy:
 - Three lines of code:
 - Import library
 - Load file
 - Make the plot
 - Aim to make more complicated things easier
 - Cuts/statistical weighting
 - Amplitude calculations and plots
 - 2D/4D/6D
- Available for people to use now
 - Comes packaged with MAUS

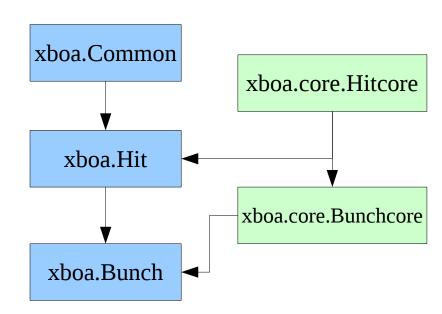


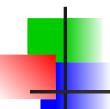

XBOA - Common


Common

- ROOT wrappers
 - Automatic histogram ranges
 - Convenience interface to graphs
 - ...
- "Useful stuff"
 - Particle masses
 - Few maths routines

XBOA - Hit



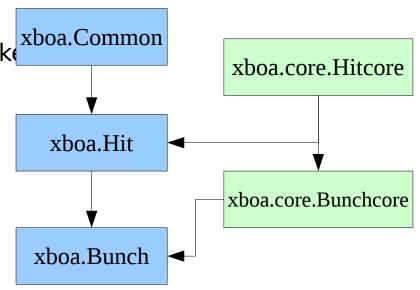

Hitcore

- C backend to Hit
- Represents a detector/MC output plane "hit"
- Container for data
- position, momentum, etc
- "Global (statistical) weight"
- Local (statistical) weight

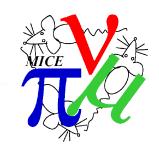
Hit

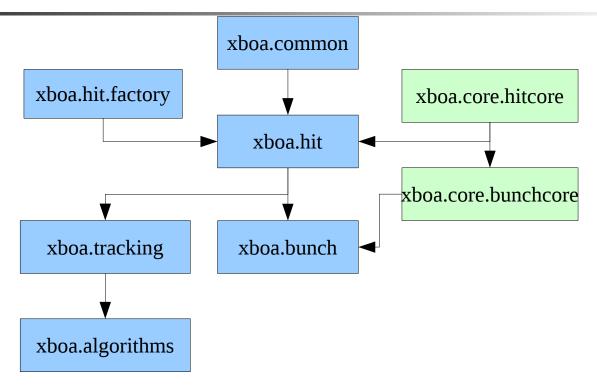
- I/O routines per output "hit"
- Utilities
 - Transformations
 - Mass shell condition
 - Equality operator

XBOA - Bunch



Bunchcore


- C backend to Bunch
- Collection of Hitcore objects to make up a "Bunch"
- Container for data
- Calculation of moments


Bunch

- I/O routines at "bunch" level
- Transformations
- Moment calculations
- Optical function calculations
- Amplitude calculations
- Plotting
 - 1D histograms, scatter plots, graphs
- Cuts

Recent additions

- Core libraries migrated from C to C++
 - C++ code separated from Python interface code
- Read routines moved to "factory" classes
 - Easier to extend/add new read routines
- Added "algorithms" library
 - Closed orbit finder, tune finder, general data analysis tools
- Added "tracking" interface library
 - Wraps external tracking libraries e.g. MAUS G4 routines

Problems/Feature Requests

- Targeted at python; this doesn't suit everyone
 - Probably too big a job to refactor into C++
- Model is "load data into memory; then do stuff with it"
 - Memory usage is too high for larger data sets
 - Rogers job to design a more MAUS-like model
 - Build up e.g. covariance matrix on a spill-by-spill basis
 - Cuts on e.g. chi2 or amplitude require multiple read operations
- Only has I/O routines for MC data at the moment
 - Easy to add interface to recon data
- Code is available to use but not mandatory
 - Folks should publish analysis scripts with their papers for Step IV papers
 - Step I papers?