Electron Muon Ranger (EMR) Software Status

François Drielsma on behalf of the EMR Group

University of Geneva

February 9, 2015

3

-

EMR Software Structure

Processing of real data from the fADCs and DBBs:

• EMRPlaneHits

IN DBB and fADC data (EMRDaq)

OUT N+2 reconEvents with EMRPlaneHits (N primary + noise + decays)

Processing of G4 data into PlaneHits structure:

• EMRSD (Sensitive Detector)

IN Geant4 steps

OUT MC EMRHits (Bars)

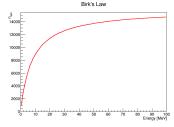
• EMRMCDigitization

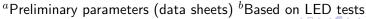
IN MC EMRHits (Bars)

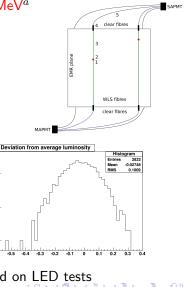
OUT N+2 reconEvents with EMRPlaneHits (N primary + noise + decays)

Common reconstruction code (range, PID parameters, etc.):

EMRRecon

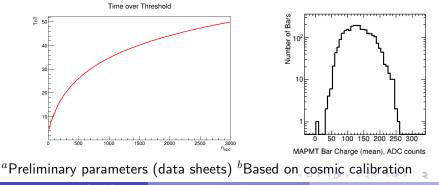

IN N+2 reconEvents with EMRPlaneHits


OUT Reconstructed N+N'+1 reconEvents (N primary + N' secondary + 1)


(日) (同) (三) (三)

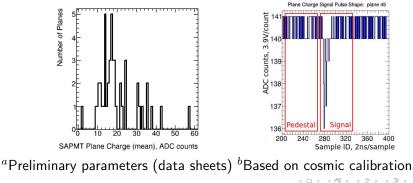
Digitization scheme: scintillation and transport

- Quantization Convert G4 energy deposition to a number of scintillating photons n_{sph}: 2000 ph/MeV^a → Apply Birk's Law
- **②** Convert n_{sph} to a number of photons trapped in the WLSf n_{tph} : **4** %^{*a*}
- S WLSf atten.: 2.0 dB/m^a
- Onnector atten.: up to 30 %^b
- Solution CLf atten: 0.35 dB/m^a

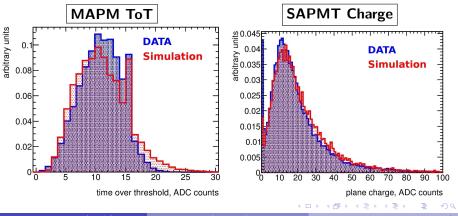

10

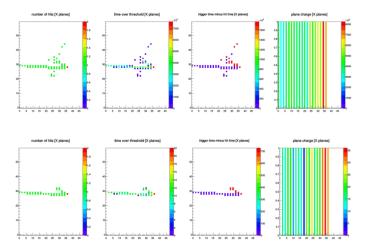
Digitization scheme: Multi-Anode PM

- Convert the number of absorbed photons n_{aph} to the number of photoelectrons n_{pe} : 20% QE^a
- **②** Correct for photocathode non-uniformity: up to $40\%^b$
- **③** Get ADC counts n_{ADC} : **8** ADC/npe^a


 ${f 0}$ Convert G4 time stamp to a time Δt in ADC counts: 2.5ns/ADC

Digitization scheme: Single-Anode PMT

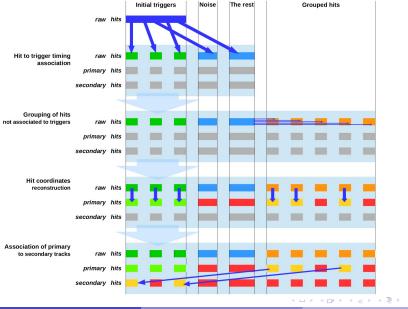

- Convert the number of absorbed photons n_{aph} to the number of photoelectrons n_{pe} : 14.5 25% QE^a
- Orrect for photocathode non-uniformity: up to $50\%^{ab}$
- Get ADC counts n_{ADC} : $\frac{1}{4} \text{ADC/npe}^{a}$
- Set signal baseline: $\sim 130 \text{ ADC}^a$
- Osimulate negative voltage pulse with random noise



Cosmics vs Digitized MC

- 4 GeV muons compared with Digitized MC
- The agreement with cosmic data is outstanding
- Peak around 10 and 15 ADC in ToT and 11 ADC in Charge
 - \rightarrow The second peak in ToT is due to the shaper of the MAROC

Digitized Beam Event Display

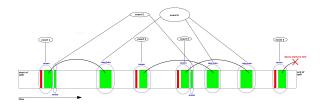


- The smallest energy depositions don't produce a signal
- The signals are converted using the calibration parameters
- Entirely integrated into MAUS (release 0.9.3)

François Drielsma (UniGe)

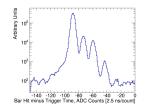
EMR Software Status

Reconstruction: Scheme



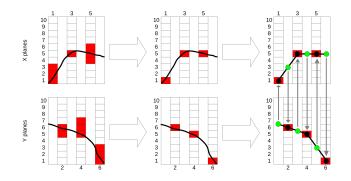
François Drielsma (UniGe)

February 9, 2015 8 / 17


3

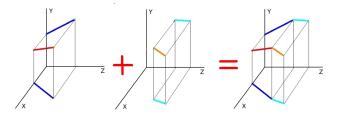
Reconstruction: Timing Association

Timing cuts are used to sort the EMR hits in different categories:


- primary particles (close to the trigger) are stored in separate EMR reconEvents (*Event 1*, 2, 3, 4);
- **noise** (close to the primary), in an additional reconEvent (*Event 5*);
- the rest, in one last reconEvent (*Event 6*), i.e.
 - decay products (e, µ);
 - cosmic muons.

Reconstruction: Hit Coordinates

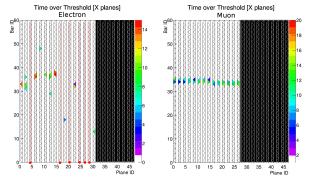
Each particle track is assembled **piecewise** in each projection:


- for each X (resp. Y) plane, the bar with the highest amplitude is selected as the x (resp. y) coordinate of the track in that plane;
- the y (resp. x) coordinate is interpolated as the average y (resp. x) coordinate of the two surrounding Y (resp. X) planes.

Reconstruction: Track matching

- An end point of a decay must match the end point of the primary
- The presence of a secondary discriminates the muons from electrons
- Reconstructed Variables:
 - Presence of a secondary track
 - Range of the primary and secondary track (function of momentum)
 - Total charge in a track
 - Ratio of the last 1/5 of the track over the first 4/5 (> 1 for muons,

~ 1 for electrons), i.e.
$$R_Q = \frac{\sum_{i=0}^{n_1-1} Q_{pl}^i/(n_1-1)}{\sum_{i=n_1}^{n_2-n_1} Q_{pl}^i/(n_2-n_1)}$$



Reconstruction: Plane Density ρ_p

The plane density is defined as the percentage of the planes that record a signal on the path of the particle or its shower, i.e.

$$\rho_p = \frac{number\,of\,planes\,hit}{\Delta z} \tag{1}$$

with Δz the depth of the particle expressed in number of planes.

Electrons: 9 planes hit over a span of 15, $\rho_p = 60\%$;

(日) (同) (三) (三)

Reconstruction: Spread in terms of χ^2/N

One way to express that angular spread of an electromagnetic shower is to fit it with a line a evaluate its χ^2 normalized to the amount of hits N:

$$\chi^2 / N = \frac{1}{N} \sum_{i} \frac{(y_i - (ax_i + b))^2}{\sigma_i^2}$$
(2)

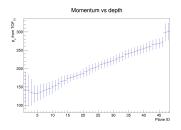
For a given array of hits (x_i, y_i) , the exact value of this parameter is expressed in term of the spread $\sigma_y^2 = E\left[(y - \overline{y})^2\right]$ as:

$$\chi^2/N = \sigma_y^2 (1 - \rho^2)$$
 (3)

with $\rho = \operatorname{Cov}(x, y) / \sigma_x \sigma_y$. This is exactly what we want as:

- Electrons have a significant spread σ_y and the hits they produce are weakly correlated $((1 \rho^2) \rightarrow 1)$, so that $\chi^2/N \rightarrow \sigma_y^2 \gg 1$
- Muons have a small spread σ_y (centre of the detector) and are strongly correlated (line, $(1-\rho^2) \rightarrow 0$), so that $\chi^2/N \ll 1$

イロト 不得下 イヨト イヨト


Reconstruction: useful variables

Best **PID** variables to tag particles:

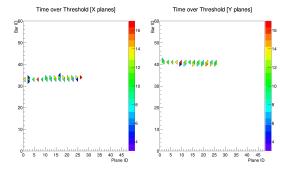
- Range cut provided p_z (a μ has a specific range, an e does not)
- Presence of a secondary track (an e doesn't decay)
- Structure of the energy deposition (high energy tail for a μ)
- + Plane density ho_P (e has low density)
- + Spread of the event in terms of χ^2/N (e has high spread)

Momentum reconstruction variable:

+ The momentum of muons can be reconstructed from their range in the EMR, provided that they stop in it ($p_z < 280 \text{ MeV/c}$)

Calibration Code

A calibration program exists in standalone and improves precision:


- **calibration** uses cosmic data to evaluate the photomultipliers irregularities and give a parameter for each channel
 - ran in March 2014 and correction map included in MAUS
 - 300k (~ 1 week)cosmic tracks recorded in the EMR
 - Measurement of the mean charge for each bar i in a plane j, $\overline{Q_{ij}}$
 - Calculation of the correction factor $\epsilon_{ij} = \overline{Q_{ij}}/\overline{Q}$, with \overline{Q} global average

TH2EMR

New histogram class displaying the right EMR geometry (triangular bars)

- Constructed on the TH2Poly ROOT class
- Functions inspired from the well known TH2 ROOT class
 - Fill(int i, int j, double w) adds weight w to bar j in plane i
 - Draw() draws and saves the histogram
- Only the bars hit are drawn, faster processing, clearer display (v. 1.0)

< 47 ▶ <

E 5 4

Integration in MAUS, Step IV readiness

What has been integrated into the trunk:

- EMRPlaneHits map modified to accommodate two additional reconEvents (noise + decays) and fill them with data
- EMRMCDigitization entirely in MAUS (v. 2.1)
- ✓ Modication of the data structure implemented
- Jata Processors adapted
- ✓ New tests for the EMRPlaneHits and EMRMCDigitization
- EMRRecon 0.1 integrated (range measurement, track matching)

\rightarrow MAUS release 0.9.3

Left to do:

- X Implement a range measurement in mm with its uncertainty
- X Include new PID variables into the MAUS code
- X Create a reducer for the EMR (including TH2EMR)

\rightarrow Almost completely ready for Step IV

E SQA