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Di-boson processes: very interesting physics…

On-shell VV production
• test gauge structure of the SM
• background for BSM searches

VV production and Higgs physics
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Figure 15. MZZ distributions for gg → H → ZZ → ℓℓ̄νℓν̄ℓ for MH = 125GeV. Applied cuts:
pT ℓ > 20GeV, |ηℓ| < 2.5, 76GeV < Mℓℓ < 106GeV, p/T > 10GeV. Other details as in Fig. 4.

gg (→ H) → ZZ → ℓℓ̄νℓν̄ℓ

σ [fb], pp,
√
s = 8TeV, MH = 125GeV ZWA interference

MT cut HZWA Hoffshell cont |Hofs+cont|2 R0 R1 R2

none 0.1593(2) 0.2571(2) 1.5631(7) 1.6376(9) 0.6196(7) 0.8997(6) 0.290(5)

MT1 < MH 0.1593(2) 0.1625(2) 0.4197(5) 0.5663(6) 0.980(2) 0.973(2) 0.902(5)

Table 6. Cross sections for gg (→ H) → ZZ → ℓℓ̄νℓν̄ℓ for MH = 125GeV without and with
transverse mass cut. Applied cuts: pT ℓ > 20GeV, |ηℓ| < 2.5, 76GeV < Mℓℓ < 106GeV, p/T >
10GeV. Other details as in Table 3.

4 Conclusions

In the Higgs search at the LHC, a light Higgs boson is not excluded by experimental data.

In the mass range 115GeV ! MH ! 130GeV, one has ΓH/MH < 10−4 for the SM Higgs

boson. We have shown for inclusive cross sections and cross sections with experimental

selection cuts that the ZWA is in general not adequate and the error estimate O(ΓH/MH)

is not reliable for a light Higgs boson. The inclusion of off-shell contributions is essential

to obtain an accurate Higgs signal normalisation at the 1% precision level. We have traced

this back to the dependence of the decay (and to a lesser degree production) matrix element

on the Higgs virtuality q2. For the H → WW,ZZ decay modes we find that above the

weak-boson pair production threshold the (q2)2 dependence of the decay matrix element

compensates the q2-dependence of the Higgs propagator, which results in a significantly

enhanced off-shell cross section in comparison to the ZWA cross section, when this phase

– 18 –

The off-shell pp->(H)->4l 
tail and Higgs properties

As a background: 
pp->(H)->WW*
Higgs production in association with jets
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Table 8: Selection table for Njet = 0 in 8 TeV data. The observed (Nobs) and expected (Nexp) yields for

the signal (Nsig) and background (Nbkg) processes are shown for the (a) eµ+ µe and (b) ee+ µµ chan-

nels. The composition of Nbkg is given on the right. The requirements are imposed sequentially from

top to bottom. Energies, masses, and momenta are in units of GeV. All uncertainties are statistical.

(a) eµ+ µe channel

Selection Nobs Nbkg Nsig

Njet = 0 9024 9000± 40 172± 2
|∆φℓℓ,MET |> π2 8100 8120± 40 170± 2
pℓℓ
T
> 30 5497 5490± 30 156± 2

mℓℓ < 50 1453 1310± 10 124± 1
|∆φℓℓ |< 1.8 1399 1240± 10 119± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

4900± 20 370± 10 510± 10 310± 10 2440± 30 470± 10
4840± 20 360± 10 490± 10 310± 10 1690± 30 440± 10
4050± 20 290± 10 450± 10 280± 10 100± 10 320± 5
960± 10 110± 6 69± 3 46± 3 18± 7 100± 2
930± 10 107± 6 67± 3 44± 3 13± 7 88± 2

(b) ee+ µµ channel

Selection Nobs Nbkg Nsig

Njet = 0 16446 15600± 200 104± 1
|∆φℓℓ,MET |> π2 13697 12970± 140 103± 1
pℓℓ
T
> 30 5670 5650± 70 99± 1

mℓℓ < 50 2314 2390± 20 84± 1
pmiss
T,rel
> 45 1032 993± 10 63± 1

|∆φℓℓ |< 1.8 1026 983± 10 63± 1
frecoil < 0.05 671 647± 7 42± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

2440± 10 190± 5 280± 6 175± 6 12300± 160 170± 10
2430± 10 190± 5 280± 6 174± 6 9740± 140 160± 10
2300± 10 170± 5 260± 6 167± 5 2610± 70 134± 4
760± 10 64± 3 53± 3 42± 3 1410± 20 62± 3
650± 10 42± 2 47± 3 39± 3 200± 5 19± 2
640± 10 41± 2 46± 3 39± 3 195± 5 18± 2
520± 10 30± 2 19± 2 22± 2 49± 3 12± 1

Table 9: Selection table for Njet = 1 in 8 TeV data. More details are given in the caption of Table 8.

(a) eµ+ µe channel

Selection Nobs Nbkg Nsig

Njet = 1 9527 9460± 40 97± 1
Nb-jet = 0 4320 4240± 30 85± 1
Z→ ττ veto 4138 4020± 30 84± 1
mℓℓ < 50 886 830± 10 63± 1
|∆φℓℓ |< 1.8 728 650± 10 59± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

1660± 10 270± 10 4980± 30 1600± 20 760± 20 195± 5
1460± 10 220± 10 1270± 10 460± 10 670± 10 160± 4
1420± 10 220± 10 1220± 10 440± 10 580± 10 155± 4
270± 4 69± 5 216± 6 80± 4 149± 5 46± 2
250± 4 60± 4 204± 6 76± 4 28± 3 34± 2

(b) ee+ µµ channel

Selection Nobs Nbkg Nsig

Njet = 1 8354 8120± 90 54± 1
Nb-jet = 0 5192 4800± 80 48± 1
mℓℓ < 50 1773 1540± 20 38± 1
pmiss
T,rel
> 45 440 420± 10 21± 1

|∆φℓℓ |< 1.8 430 410± 10 20± 1
frecoil < 0.2 346 320± 10 16± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

820± 10 140± 10 2740± 20 890± 10 3470± 80 60± 10
720± 10 120± 10 720± 10 260± 10 2940± 70 40± 10
195± 4 35± 2 166± 5 65± 3 1060± 10 20± 2
148± 3 21± 1 128± 5 52± 3 64± 4 5.1± 0.8
143± 3 20± 1 125± 5 51± 3 63± 4 4.5± 0.7
128± 3 17± 1 97± 4 44± 3 25± 2 3.1± 0.6

7.2 Statistical model and signal extraction

The statistical analysis uses the likelihood function L, the product of Poisson functions for each
signal and control region and Gaussian constraints, where the product is over the decay channels. In

the Poisson term for the signal region µ scales the expected signal yield, with µ = 0 corresponding to

22

Experimental analyses of Higgs decays to W-
bosons splits the Higgs signal according to jet 
multiplicities since systematic uncertainties in 
H+0 jets, H+1 jets and H+2 jets are very 
different.

Signal to background ratios in 
H+1 and H+2 jet bins are small, they are 
roughly 10 percent of the background

The signal significance in H+1jet is smaller, but 
not much smaller, than the significance in H+0 
jets
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On-shell production: a lot is known

Figure 1: NLO boson production in pp-collisions. The decay branching ratios of the W ’s and Z’s
into one species of leptons are included. For γγ and V γ we apply pT cuts of 25 and 10 GeV to
photons respectively.

1. Introduction

The current plan for the LHC calls for running in both 2011 and 2012. Running in 2011

is at a centre of mass energy at
√
s = 7 TeV, with a baseline expectation of 1 fb−1 per

experiment and a good chance that greater luminosity will be accumulated. At the end of

the 2012 run it is likely that data samples in excess of 5 fb−1 will have been accumulated

by both of the general purpose detectors. Data samples of this size will (at the very least)

allow detailed studies of the production of pairs of vector bosons.

It therefore seems opportune to provide up-to-date predictions for the production of

all pairs of vector bosons, specifically for the LHC operating at 7 TeV. This extends the

previous implementation of diboson production in MCFM [1] which was focussed primarily

on the Tevatron. Moreover, we also consider the production of final states that contain real

photons. This requires the inclusion of fragmentation contributions in order to address the

issue of isolation in an experimental context. In addition, we have also included the con-

tribution of the gluon–gluon initial state to a number of processes. These finite corrections

are formally of higher order but can be of phenomenological relevance at the LHC where

the gluon flux is substantial.

A review of the current experimental status of vector pair boson production, primarily

from the Tevatron, can be found in ref. [2]. The production of pairs of vector bosons is
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Process Syntax Cross section (pb)

Vector-boson pair +jets LO 13 TeV NLO 13 TeV

b.1 pp→W+W− (4f) p p > w+ w- 7.355± 0.005 · 101 +5.0%
−6.1%

+2.0%
−1.5% 1.028± 0.003 · 102 +4.0%

−4.5%
+1.9%
−1.4%

b.2 pp→ZZ p p > z z 1.097± 0.002 · 101 +4.5%
−5.6%

+1.9%
−1.5% 1.415± 0.005 · 101 +3.1%

−3.7%
+1.8%
−1.4%

b.3 pp→ZW± p p > z wpm 2.777± 0.003 · 101 +3.6%
−4.7%

+2.0%
−1.5% 4.487± 0.013 · 101 +4.4%

−4.4%
+1.7%
−1.3%

b.4 pp→ γγ p p > a a 2.510± 0.002 · 101 +22.1%
−22.4%

+2.4%
−2.1%

6.593± 0.021 · 101 +17.6%
−18.8%

+2.0%
−1.9%

b.5 pp→ γZ p p > a z 2.523± 0.004 · 101 +9.9%
−11.2%

+2.0%
−1.6% 3.695± 0.013 · 101 +5.4%

−7.1%
+1.8%
−1.4%

b.6 pp→ γW± p p > a wpm 2.954± 0.005 · 101 +9.5%
−11.0%

+2.0%
−1.7%

7.124± 0.026 · 101 +9.7%
−9.9%

+1.5%
−1.3%

b.7 pp→W+W−j (4f) p p > w+ w- j 2.865± 0.003 · 101 +11.6%
−10.0%

+1.0%
−0.8% 3.730± 0.013 · 101 +4.9%

−4.9%
+1.1%
−0.8%

b.8 pp→ZZj p p > z z j 3.662± 0.003 · 100 +10.9%
−9.3%

+1.0%
−0.8% 4.830± 0.016 · 100 +5.0%

−4.8%
+1.1%
−0.9%

b.9 pp→ZW±j p p > z wpm j 1.605± 0.005 · 101 +11.6%
−10.0%

+0.9%
−0.7% 2.086± 0.007 · 101 +4.9%

−4.8%
+0.9%
−0.7%

b.10 pp→ γγj p p > a a j 1.022± 0.001 · 101 +20.3%
−17.7%

+1.2%
−1.5% 2.292± 0.010 · 101 +17.2%

−15.1%
+1.0%
−1.4%

b.11∗ pp→ γZj p p > a z j 8.310± 0.017 · 100 +14.5%
−12.8%

+1.0%
−1.0% 1.220± 0.005 · 101 +7.3%

−7.4%
+0.9%
−0.9%

b.12∗ pp→ γW±j p p > a wpm j 2.546± 0.010 · 101 +13.7%
−12.1%

+0.9%
−1.0%

3.713± 0.015 · 101 +7.2%
−7.1%

+0.9%
−1.0%

b.13 pp→W+W+jj p p > w+ w+ j j 1.484± 0.006 · 10−1 +25.4%
−18.9%

+2.1%
−1.5%

2.251± 0.011 · 10−1 +10.5%
−10.6%

+2.2%
−1.6%

b.14 pp→W−W−jj p p > w- w- j j 6.752± 0.007 · 10−2 +25.4%
−18.9%

+2.4%
−1.7% 1.003± 0.003 · 10−1 +10.1%

−10.4%
+2.5%
−1.8%

b.15 pp→W+W−jj (4f) p p > w+ w- j j 1.144± 0.002 · 101 +27.2%
−19.9%

+0.7%
−0.5% 1.396± 0.005 · 101 +5.0%

−6.8%
+0.7%
−0.6%

b.16 pp→ZZjj p p > z z j j 1.344± 0.002 · 100 +26.6%
−19.6%

+0.7%
−0.6% 1.706± 0.011 · 100 +5.8%

−7.2%
+0.8%
−0.6%

b.17 pp→ZW±jj p p > z wpm j j 8.038± 0.009 · 100 +26.7%
−19.7%

+0.7%
−0.5% 9.139± 0.031 · 100 +3.1%

−5.1%
+0.7%
−0.5%

b.18 pp→ γγjj p p > a a j j 5.377± 0.029 · 100 +26.2%
−19.8%

+0.6%
−1.0% 7.501± 0.032 · 100 +8.8%

−10.1%
+0.6%
−1.0%

b.19∗ pp→ γZjj p p > a z j j 3.260± 0.009 · 100 +24.3%
−18.4%

+0.6%
−0.6% 4.242± 0.016 · 100 +6.5%

−7.3%
+0.6%
−0.6%

b.20∗ pp→ γW±jj p p > a wpm j j 1.233± 0.002 · 101 +24.7%
−18.6%

+0.6%
−0.6%

1.448± 0.005 · 101 +3.6%
−5.4%

+0.6%
−0.7%

Table 2: Sample of LO and NLO rates for vector-boson pair production, possibly within cuts and in association with jets, at the

13-TeV LHC; we also report the integration errors, and the fractional scale (left) and PDF (right) uncertainties. See table 1 for

the meaning of wpm. All cross sections are calculated in the five-flavour scheme, except for processes b.1, b.7, and b.15, which are

obtained in the four-flavour scheme to avoid resonant-top contributions. NLO results for V V production have been known for some

time [246–255], are publicly available in MCFM and in VBFNLO [244], and are matched to parton showers in MC@NLO [26] and

POWHEG [256]. NLO results for V V with up to an extra jet have been made available in POWHEG [257, 258]. NLO corrections

to γγ plus up to three jets are also known [259–263]. Other available results are: W+W−jj [264, 265], W±W±jj [266], W±W±jj

(EW+QCD) [267], Zγj [268], Wγjj [269], WZjj [270], Wγj [271, 272], WZj [273]. We do not show results for NLO corrections to

EW-induced production of V V plus two jets, such as W±W∓jj [274], WZjj [275], and ZZjj [276], which can also be obtained with

POWHEG and VBFNLO.

–
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Very efficient NLO 
implementations

[Campbell, Ellis, Williams (2013)]

[Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao,
Stelzer, Torrielli, Zaro; MadGraph5_aMC@NLO (2014)]

Automatic 
NLOPS + merging

Typical size of NLO corrections: ~ 50%



On-shell production: a lot is known

~50% NLO corrections -> NNLO is desirable

First results for fully inclusive VV started to appear: ZZ

Figure 1: ZZ cross section at LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO (solid)
as a function of

√
s. The ATLAS and CMS experimental results at

√
s = 7 TeV and

√
s = 8

TeV are also shown for comparison [3–6]. The lower panel shows the NNLO and NLO+gg results
normalized to the NLO prediction.

the LO result by about 45%. The impact of NNLO corrections with respect to the NLO result
ranges from 11% (

√
s = 7 TeV) to 17% (

√
s = 14 TeV). Using NNLO PDFs throughout, the gluon

fusion contribution provides between 58% and 62% of the full NNLO correction. We find that
the one-loop diagrams involving a top quark provide a contribution which is only few per mille
of the full NNLO cross section. Since the quantitative impact of the two-loop diagrams with a
light fermion loop is extremely small, we estimate that the neglected two-loop diagrams involving
a top-quark contribute well below the per mille level.

The theoretical predictions can be compared to the ATLAS and CMS measurements [3–6]
carried out at

√
s = 7 TeV and

√
s = 8 TeV, which are also shown in the plot. We see that

the experimental uncertainties are still relatively large and that the ATLAS and CMS results
are compatible with both the NLO and NNLO predictions. The only exception is the ATLAS
measurement at

√
s = 8 TeV [5], which seems to prefer a lower cross section. The comparison

between our predictions and the experimental results, however, should be interpreted with care.
First, we point out that the LHC experiments obtain their ZZ production cross section from
four-lepton production using an interval in dilepton invariant masses around the Z boson mass,
thus not including some contribution from far off-shell Z bosons. Then, EW corrections are not
included in our calculation, and are expected to provide a negative contribution to the inclusive
cross section [21].

In Table 1 we report the LO, NLO and NNLO cross sections and scale uncertainties, evaluated
by varying µR and µF simultaneously and independently in the range 0.5mZ < µR, µF < 2mZ

with the constraint 0.5 < µF/µR < 2. From Table 1 we see that the scale uncertainties are about
±3% at NLO and remain of the same order at NNLO. We also see that the NLO scale uncertainty

3

[Cascioli, Gehrmann, Grazzini, Kallweit, Maierhoefer, 
v. Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs (2014)]

• Good agreement with 
exp. measurements 

• Non-negligible NNLO 
corrections (~10%)

• gg->VV accounts for 
~60% of the full NNLO

• NLO scale variation 
underestimates error

• ~ 3% th uncertainty



On-shell production: a lot is known

~50% NLO corrections -> NNLO is desirable

First results for fully inclusive VV started to appear: WW

• Non-negligible NNLO 
corrections (~10%)

• gg->VV: ~35% of full NNLO

• NLO scale variation 
underestimates error

• ~ 3% th uncertainty

• Tension with exp. understood 
[Monni, Zanderighi (2014)]

• Fiducial NNLO predictions 
highly desirable

3

√
s

TeV σLO σNLO σNNLO σgg→H→WW∗

7 29.52+1.6%
−2.5% 45.16+3.7%

−2.9% 49.04+2.1%
−1.8% 3.25+7.1%

−7.8%

8 35.50+2.4%
−3.5% 54.77+3.7%

−2.9% 59.84+2.2%
−1.9% 4.14+7.2%

−7.8%

13 67.16+5.5%
−6.7% 106.0+4.1%

−3.2% 118.7+2.5%
−2.2% 9.44+7.4%

−7.9%

14 73.74+5.9%
−7.2% 116.7+4.1%

−3.3% 131.3+2.6%
−2.2% 10.64+7.5%

−8.0%

TABLE I. LO, NLO and NNLO cross sections (in picobarn)
for on-shell W+W− production in the 4FNS and reference
results for gg → H → WW ∗ from Ref. [75].

decrease when moving from LO to NLO and NNLO.
Moreover, the NNLO (NLO) corrections turn out to ex-
ceed the scale uncertainty of the NLO (LO) predictions
by up to a factor 3 (34). The fact that LO and NLO
scale variations underestimate higher-order effects can be
attributed to the fact that the gluon–quark and gluon–
gluon induced partonic channels, which yield a sizable
contribution to the W+W− cross section, appear only
beyond LO and NLO, respectively. The NNLO is the
first order at which all partonic channels are contribut-
ing. The NNLO scale dependence, which amounts to
about 3%, can thus be considered a realistic estimate of
the theoretical uncertainty due to missing higher-order
effects.

In Figure 1, theoretical predictions in the 4FNS are
compared to CMS and ATLAS measurements at 7 and
8 TeV [5–8]. For a consistent comparison, our results
for on-shell W+W− production are combined with the
gg → H → WW ∗ cross sections reported in Table I.
It turns out that the inclusion of the NNLO corrections
leads to an excellent description of the data at 7 TeV and
decreases the significance of the observed excess at 8 TeV.
In the lower frame of Figure 1, predictions and scale vari-
ations at NNLO are compared to NLO ones, and also the
individual contribution of the gg → W+W− channel is
shown. Using NNLO parton distributions throughout,
the loop induced gluon fusion contribution is only about
35% of the total NNLO correction.

In the light of the small scale dependence of the 4FNS
NNLO cross section, the ambiguities associated with the
definition of a top-free W+W− cross section and its sen-
sitivity to the choice of the FNS might represent a sig-
nificant source of theoretical uncertainty at NNLO. In
particular, the omission of b-quark emissions in our 4FNS
definition of the W+W− cross section implies potentially
large logarithms of mb in the transition from the 4FNS
to the 5FNS. To quantify this kind of uncertainties, we
study the NNLO W+W− cross section in the 5FNS and
introduce a subtraction of its top contamination that al-
lows for a consistent comparison between the two FNSs.
An optimal definition of W+W− production in the 5FNS
requires maximal suppression of the top resonances in

σ/σNLO
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FIG. 1. The on-shell W+W− cross section in the 4FNS at

LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO

(solid) combined with gg → H → WW ∗ is compared to re-

cent ATLAS and CMS measurements [5–8]. In the lower panel

NNLO and NLO+gg results are normalized to NLO predic-

tions. The bands describe scale variations.

the pp → W+W−b and pp → W+W−bb̄ channels. At
the same time, the cancellation of collinear singularities
associated with massless g → bb̄ splittings requires a suf-
ficient level of inclusiveness. The difficulty of fulfilling
both requirements is clearly illustrated in Figure 2 (left),
where 5FNS predictions are plotted versus a b-jet veto
that rejects b-jets with pT,bjet > pvetoT,bjet over the whole
rapidity range, and are compared to 4FNS results. In
the inclusive limit, pvetoT,bjet → ∞, the higher-order correc-
tions in the 5FNS suffer from a huge top contamination.
At 7 (14) TeV the resulting relative enhancement with
respect to the 4FNS amounts to about 30 (60)% at NLO
and a factor 4 (8) at NNLO. In principle, it can be sup-
pressed through the b-jet veto. However, for natural jet
veto values around 30 GeV the top contamination re-
mains larger than 10% of the W+W− cross section, and
a complete suppression of the top contributions requires
a veto of the order of 1 GeV. Moreover, as pvetoT,bjet → 0,
the (N)NLO cross section does not approach a constant,
but, starting from pvetoT,bjet ∼ 10 GeV, it displays a loga-
rithmic slope due to singularities associated with initial
state g → bb̄ splittings. This sensitivity to the jet-veto
parameters represents a theoretical ambiguity at the sev-
eral percent level, which is inherent in the definition of
top-free W+W− production based on a b-jet veto.

To circumvent this problem we will adopt an alterna-

[Cascioli, Gehrmann, Grazzini, Kallweit, Maierhoefer, 
v. Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs (2014)]



pp->4l and Higgs: less satisfactory situation

NNLO predictions for pp->(H)->4l more complicated 
than inclusive pp->VV -> only NLO is known

For Higgs analysis, fully inclusive predictions for stable  
pp->VV are clearly not adequate

• standard ‘on-peak’ H->WW* analysis:                        
off-shell Ws, good control on lepton distribution shapes

• ‘off-shell’ analysis of the H->ZZ tail:                       
lepton correlations to reduce qq->VV background, 
signal/background gg->(H)->ZZ interference effects

Given the accuracy goals of the Higgs program,
FULL (NNLL+)NNLO PREDICTIONS HIGHLY DESIRABLE



pp->4l and Higgs: the case of gg->VV
LO

•NNLO QCD, but enhanced by gluon flux
• In general ~ 3% of NLO result, but for Higgs analysis 
can be as large as ~10-30%

•Non-trivial modifications of lepton shapes
•Can interfere with the Higgs signal

NLO, not known

•Gluon initiated-process -> expect large radiative 
corrections (~ to gg->H [Bonvini, FC, Forte, Melnikov, Ridolfi (2013)])

• First corrections already involve complicated 2-loop amps.



Example I: pp->4l and H->WW*
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Figure 9. Atlas (left) and Cms (right) analysis at 8 TeV after pre-selection cuts: azimuthal
separation of the charged leptons in the 0-jet (top) and 1-jet (bottom) bins. Similar predictions
and uncertainty bands as in Fig. 8.

distributions for the exclusive 0- and 1-jet bins and for the two experiments are shown in
Figures 11–13.

In the signal and control regions, as well as in both jet bins, the size of the vari-
ous corrections and the Meps@Nlo uncertainties behave fairly similar to what observed
at pre-selection level. The Nlo, Mc@Nlo and Meps@Nlo distributions agree at few-
percent level in the 0-jet bin, while in the 1-jet bin discrepancies between Mc@Nlo and
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Figure 10. Atlas (left) and Cms (right) analysis at 8 TeV after pre-selection cuts: dilepton
invariant mass distribution in the 0-jet (top) and 1-jet (bottom) bins. Similar predictions and
uncertainty bands as in Fig. 8.

Meps@Nlo on the 10–15% level and little Mc@Nlo shape distortions appear. The size
of the corrections and the scale uncertainties for the two experimental analyses are qualita-
tively and quantitatively similar. Obviously, due to the different cuts, absolute background
predictions for Atlas and Cms behave differently. The shapes of Meps@Nlo distribu-
tions are again in excellent agreement with Nlo, suggesting moderate Sudakov logarithms
beyond NLO. This is consistent with the small scale uncertainty of the merged simulation.
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[Cascioli, Hoeche, Krauss, Maierhoefer, 
Pozzorini, Siegert (2013)]

ΔΦll and mll after 
pre-selection cuts

Bulk of effects in the 
Higgs signal region

Non trivial shapes



Example II: the off-shell H -> ZZ tail
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Figure 15. MZZ distributions for gg → H → ZZ → ℓℓ̄νℓν̄ℓ for MH = 125GeV. Applied cuts:
pT ℓ > 20GeV, |ηℓ| < 2.5, 76GeV < Mℓℓ < 106GeV, p/T > 10GeV. Other details as in Fig. 4.

gg (→ H) → ZZ → ℓℓ̄νℓν̄ℓ

σ [fb], pp,
√
s = 8TeV, MH = 125GeV ZWA interference

MT cut HZWA Hoffshell cont |Hofs+cont|2 R0 R1 R2

none 0.1593(2) 0.2571(2) 1.5631(7) 1.6376(9) 0.6196(7) 0.8997(6) 0.290(5)

MT1 < MH 0.1593(2) 0.1625(2) 0.4197(5) 0.5663(6) 0.980(2) 0.973(2) 0.902(5)

Table 6. Cross sections for gg (→ H) → ZZ → ℓℓ̄νℓν̄ℓ for MH = 125GeV without and with
transverse mass cut. Applied cuts: pT ℓ > 20GeV, |ηℓ| < 2.5, 76GeV < Mℓℓ < 106GeV, p/T >
10GeV. Other details as in Table 3.

4 Conclusions

In the Higgs search at the LHC, a light Higgs boson is not excluded by experimental data.

In the mass range 115GeV ! MH ! 130GeV, one has ΓH/MH < 10−4 for the SM Higgs

boson. We have shown for inclusive cross sections and cross sections with experimental

selection cuts that the ZWA is in general not adequate and the error estimate O(ΓH/MH)

is not reliable for a light Higgs boson. The inclusion of off-shell contributions is essential

to obtain an accurate Higgs signal normalisation at the 1% precision level. We have traced

this back to the dependence of the decay (and to a lesser degree production) matrix element

on the Higgs virtuality q2. For the H → WW,ZZ decay modes we find that above the

weak-boson pair production threshold the (q2)2 dependence of the decay matrix element

compensates the q2-dependence of the Higgs propagator, which results in a significantly

enhanced off-shell cross section in comparison to the ZWA cross section, when this phase

– 18 –

[Kauer, Passarino (2012)]

• Past the VV threshold, 
enhanced decay into 
longitudinal vector bosons 
compensate the rapidly 
falling Higgs propagator

• Small but persisting off-
shell tail, O(10%) of the 
peak cross-section

• Irrelevant for standard 
analysis if proper selection 
cuts are applied

• If looked for, can give complementary information w.r.t 
traditional searches

• Example: bounds on the Higgs total width [FC, Melnikov (2013); 
CMS/ATLAS measurements (2014)]



Example II: the off shell H->ZZ tail
Off-shell analysis based on (more or less 

refined) counting of events in the Higgs tail ->
good control of pp->4l mandatory

Nqq!ZZ ⇡ N
tot

FIG. 4: Overall picture at 8 TeV, (colour online). In this and the following figure the CMS cuts described
in the text have been imposed, but the constraint m4ℓ > 100 GeV has been removed to extend the range of
the plot.

m4ℓ < 130 GeV m4ℓ > 130 GeV m4ℓ > 300 GeV
Energy σH

peak σH
off σI

off σqg,int
off σH

off σI
off σqg,int

off

7 TeV 0.203 0.044 -0.086 0.0091 0.034 -0.050 0.0023
8 TeV 0.255 0.061 -0.118 0.011 0.049 -0.071 0.0029

TABLE III: Fiducial cross sections for pp → H → ZZ → e−e+µ−µ+ in fb. All cross-sections are computed
with leading order MSTW 2008 parton distribution functions [38] and renormalization and factorization
scales set equal to mH/2.

of the gg interference contribution, despite using what we believe to be identical input parameters.
The results of ref. [8] were obtained using the code gg2VV [9].

We believe that the cause of the discrepancy is a cut of pZT > 7 GeV imposed in the double
precision version of gg2VV for the continuum process, but not on the Higgs signal process. The
interference contribution is obtained by forming the combination (c.f. Eq. (38)),

σI = |MH +MC |2 − |MC |2 − |MH |2 . (39)

The pT cut is performed on the first two terms on the right hand side of Eq. (39) but not on the
third. The cut on the amplitudes that involve the continuum background in the gg2VV code is
presumably performed for reasons of numerical stability.

We shall now discuss the treatment of the region of low pT of the Z-boson in our code, and
illustrate the importance of low pT . In Fig. 7 we first demonstrate the impact of the spurious 1/pT
singularities that appear in the amplitudes. The figures show the calculation of the gg → ZZ cross
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N
int
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tot

N
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⇠ 10�2N
tot

[Campbell, Ellis, Williams (2013)]

A drawback: large (destructive) interference

In the SM: σint ~ - 50% off peak [Kauer, Passarino (2012)]
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pp->4l and Higgs analysis: what is needed

•WW* background in Higgs searches:
• fully exclusive pp -> 4l @ NNLO QCD 
• gg -> 4l @ NLO QCD from off-shell vector-bosons

•Off-shell tail in the 4l invariant mass distribution: 
• fully exclusive pp -> VV -> 4l @ NNLO QCD
•gg -> 4l @ NLO QCD
•signal / background gg -> (H) -> 4l interferences

Precise Higgs analysis in the di-boson channels require 
sophisticated QCD predictions. 

In particular, the following f.o. results are highly desirable:

(+NNLL, PS…)



Anatomy of a NNLO computation…

• In general, the complicated part of fully differential NNLO 
computations is to consistently extract IR singularity from 
double-real emission/real-virtual emission

• In this case however, the singularity structure is very simple 
(colorless final state) -> this problem is well understood

• The missing piece are COMPLICATED TWO-LOOP AMPLITUDES

RRRVVV

Z hvv4
✏4

+
vv3
✏3

+
vv2
✏2

+
vv1
✏

+ vv0
i
d�2Z h rv2

✏2
+

rv1
✏

+ rv0
i
d�3

Z
[rr0] d�4



…and of a NLO one

V R

• By today’s standards, gg->VVj @ 1-loop is well within reach

• On the other hand, gg->VV* @ 2-loop is a 2->2 process 
involving many different scales (s, t , MV,12, MV,22) and as such 
it is very challenging

• Nevertheless, lot of recent developments and new ideas in 
the multi-loop community made this computation possible

(Same story for qq->VV @ 2-loop
[FC, Henn, Melnikov, A.V. Smirnov, V. A. Smirnov (2014)])



Computing 2-loop
gg->VV amplitudes



gg->VV: what we computed

• Generic amplitude for gg -> VV* -> 4l, for V=γ*,Z,W and l=l±,ν

• Computation at the amplitude-level -> possible to interfere 
with (well-known) Higgs amplitudes

• For now, we neglected however contributions from the third 
generation (=massive quarks in the loop). Good 
approximation at low invariant masses, but can be problematic 
beyond the ttbar threshold (in the H->ZZ off-shell tail…)



Computing amplitudes: the 1-loop paradigm

No matter how complicated it is, near D=4 any 1-loop 
amplitude can be written as

Universal scalar 
‘Master Integrals’

Process-dependent 
coefficients

•The goal of the game is then ‘just’ to isolate the 
coefficients d,c,b,R (PV, generalized unitarity…)

•The full procedure is algebraic

•MI are computed once and for all



The problem at 2-loop

Despite a lot of interesting recent progress, we do not 
have a similar picture at 2-loop

•No process-independent basis of master integrals

•No algebraic way to reduce the full amplitude to a 
sum of (a minimal set of) master integrals times 
process-dependent coefficients

•Fortunately, non-trivial identities between the 
(many and complicated) tensor integrals 
contributing to a 2-loop amplitude can still be 
found, thanks to their symmetry properties

•Main tool: IBP identities                              
[Tkachov (1981), Chetyrkin and Tkachov (1981)]



IBP in a nut-shell
• In dimensional regularization, multi-loop integrals are 
invariant under shift of the loop-momentum k ! k + ↵q

Z
ddkF (k; {pj}) =

Z
dd(k + ↵q)F (k + ↵q; {pj})

•The above (trivial) condition can give interesting 
information if considered for infinitesimal α

↵

Z
ddk

@

@k
· [qF (k, {pj})] = 0

•When acting on the Feynman integrand F,  ∂k changes the 
numerator / propagator structure -> relations between 
different integrals



IBP in a nut-shell
•The systematic application of IBPs for all possible ∂i [qj…] 
leads to many relations between different Feynman 
integrals

•Through these relations, all the relevant integrals of a 
multi-loop amplitude can be related to a minimal set of 
process-dependent basic ‘master integral’

•Although this step is highly non-trivial, it can be done in an 
algorithmic way [Laporta (2001)]

• Nowadays, many public computer implementation of the 
Laporta algorithm are available (Air, FIRE, Reduze…)

• Reducing all the relevant integrals to a minimal set is a 
solved problem, for a generic process in principle and for 
not too complicated kinematics in practice



IBPs for gg->VV: from amplitude to form factors

• In order for IBP to work effectively, the numerator of the 
amplitude integrand must be of the form f(pi . kj)

• In general, this is not the case for amplitudes, as kj can be 
contracted with polarization vectors

•Typically, this is solved by considering 

•However, we are interested in the amplitude (lepton decay, 
interferences…)

•To solve this issue: project the amplitude onto helicity-
stripped form-factors. 

•These should be independent, to avoid the appearance of 
spurious singularities 

X

pol

2Re (A⇤
tree

A
loop

)

kj · ✏V ⇠ hlkj l̄]



IBPs for gg->VV: from the amplitude to form factors

• In our case, this can be achieved with 9 helicity-dependent 
form factors

8

amplitude A in Eq.(7) through nine independent Lorentz structures

A�1�2 =N�1�2

"

F �1�2
1 p1 · ✏4p1 · ✏3 + F �1�2

2 p1 · ✏4p2 · ✏3 + F �1�2
3 p1 · ✏3p2 · ✏4

+ F �1�2
4 p2 · ✏4p2 · ✏3 + F �1�2

5 ✏4 · ✏3 + i✏µ⌫↵�p
µ
1p

⌫
2p

↵
?

✏�4

⇣

F �1�2
6 p1 · ✏3 + F �1�2

7 p2 · ✏3
⌘

+ i✏µ⌫↵�p
µ
1p

⌫
2p

↵
?

✏�3

⇣

F �1�2
8 p1 · ✏4 + F �1�2

9 p2 · ✏4
⌘

#

,

(16)

where N�1�2 are the normalization factors for left-left and left-right polarization cases

NLL =

h12i
[12]s

, NLR =

h1p̂
?

2]

[1p̂
?

2ip2
?

s2
. (17)

To account for transitions of vector bosons to final state leptons, their polarization vectors are

replaced by matrix elements of vector and axial-vector currents. We therefore choose

✏µ3L = h5|�µ|6], ✏µ3R = h6|�µ|5], ✏µ4L = h7|�µ|8], ✏µ4R = h8|�µ|7]. (18)

We note that, although we need helicity amplitudes for all possible helicity combinations of leptons,

it is sufficient to compute just one of them since other helicity amplitudes can be obtained using

simple replacement rules. For example the right-handed polarization of the vector boson with

momentum p3 is obtained from the left-handed one upon the replacement 5 $ 6. Since form

factors Fi2{1..9} are independent of lepton momenta such a replacement does not affect them. x For

this reason we present helicity amplitude where polarization of both electroweak vector bosons is

taken to be left-handed. We find

A�1�2
3L4L =N�1�2

n⇣

F �1�2
1 h15i[61] + F �1�2

2 h25i[62]
⌘

h17i[81]

+

⇣

F �1�2
3 h15i[61] + F �1�2

4 h25i[62]
⌘

h27i[82] + 2F �1�2
5 h57i[86]

+

1

2

⇣

F �1�2
6 h15i[61] + F �1�2

7 h25i[62]
⌘⇣

h12ih78i[81][82] + h17ih27i[21][87]
⌘

� 1

2

⇣

F �1�2
8 h17i[81] + F �1�2

9 h27i[82]
⌘⇣

h12ih56i[61][62] + h15ih25i[21][65]
⌘o

.

(19)

The F form factors that enter the amplitude are expressed throught either T or G form factors.

This can be done in a straightforward way using Eqs.(7,13,15,16 ). Examples of corresponding

relations are shown in the Appendix.

III. CALCULATION OF THE AMPLITUDE

We apply the set-up described in the previous Section to the calculation of gluon-fusion amplitude.

There are 93 non-vanishing two-loop diagrams that contribute to gg ! V V amplitude; some

g(p1) + g(p2) !
⇥
V3(p3) ! l(p5)l̄(p6)

⇤
+

⇥
V4(p4) ! l(p7)l̄(p8)

⇤

•At the integrand level, Fi = Fi (s,t,M32,M42; {ki . p1,2,3, k1. k2})

•As such, each integral in Fi can be reduced to a minimal set 
of master integrals via IBP relations



Remember the 1-loop story

•After IBP reduction, we effectively computed the 
coefficient in front of a minimal set of integrals, i.e. 
the 2-loop equivalent of d,c,b,R

•At 1-loop, this would be the end of the story

•At 2-loop however the (many) basis integrals are 
not known, and must be computed

•THIS IS THE MOST CHALLENGING TASK TO PERFORM



Master integrals for gg->VV
At 2-loop, 6 distinct families of master integrals

Each contains several independent 
(scalar and tensor) master integrals

p1

p2
p4

p3
gP12
26 = ϵ3R12sG1,1,1,2,1,0,0,0,0 , (7.28)

fP12
26 ∼ 0,

p1

p2 p4

p3
gP12
27 = −ϵ4s(p22 − t)G0,1,1,1,1,1,1,0,0 , (7.29)

fP12
27 ∼

e2iπϵx−4ϵ

4
+

3x−2ϵ

4
− x−3ϵN1,

p1

p2 p4

p3
gP12
28 = −ϵ4s(p21 − t)G1,0,1,1,1,1,1,0,0 , (7.30)

fP12
28 ∼ −

e2iπϵ

4

(

1 + ϵ2π2 + 30ζ3ϵ
3 +

7ϵ4π4

10

)

+
x−2ϵ

4

(

1 +
π2ϵ2

3
+ 14ζ3ϵ

3 +
2π4ϵ4

3

)

,

p1

p2 p4

p3
gP12
29 = ϵ4 s2 t G1,1,1,1,1,1,1,0,0 , , (7.31)

fP12
29 ∼ −

e2iπϵx−4ϵ

4
+ x−3ϵN1 −

x−2ϵ

2

(

2 +
π2ϵ2

6
+ 7ζ3ϵ

3 +
π4ϵ4

3

)

,

p1

p2 p4

p3 gP12
30 = ϵ2

[

−
1

2
ϵ p21sG0,1,1,0,1,2,1,0,0 −

1

2
ϵ p22sG1,0,0,1,1,2,1,0,0 , (7.32)

+ϵ(p21 + p22)sG1,1,0,0,1,1,2,0,0 + ϵ2s2G1,1,1,1,1,1,1,−1,0

]

,

fP12
30 ∼

3

4
x−2ϵ −

x−3ϵ

2
N1,

p1

p2 p4

p3

gP12
31 = ϵ4R12sG1,1,1,1,1,1,1,0,−1 , (7.33)

fP12
31 = 0.

The master integrals for the family P13 and their limits in the kinematic point x →
0, y → 1, z → 1 read

p1

p2 p4

p3

gP13
1 = ϵ2tG0,0,0,0,1,2,2,0,0 , (7.34)

fP13
1 ∼ −e2iπϵ,

p1

p2 p4

p3
gP13
2 = ϵ2p21G0,0,1,0,2,2,0,0,0 , (7.35)

fP13
2 ∼ −e2iπϵ,
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p1

p2 p4

p3
gP13
23 = ϵ4(p21 − s)G1,0,1,1,1,1,0,0,0 , (7.56)

fP13
23 ∼ x−2ϵ

(

−
π2ϵ2

12
−

7ζ3ϵ3

2
−

π4ϵ4

6

)

+
e2iπϵ

2

(

−
π2ϵ2

6
− ζ3ϵ

3 −
π4ϵ4

20

)

− x−ϵ

(

−
π2ϵ2

6
+

(

−
iπ3

6
− 4ζ3

)

−

(

π4

24
+ 4iπζ3

)

ϵ4
)

,

p1

p2 p4

p3
gP13
24 = ϵ3stG1,1,0,0,1,1,2,0,0 , (7.57)

fP13
24 ∼

e2iπϵx−4ϵ

4
−

3x−2ϵ

4

(

1 +
π2ϵ2

3
+ 2ζ3ϵ

3 +
π4ϵ4

10

)

,

p1

p2 p4

p3

gP13
25 = ϵ4(p23 − s)G1,1,1,0,0,1,1,0,0 , (7.58)

fP13
25 ∼

x−2ϵ

2

(

π2ϵ2

6
+ ζ3ϵ

3 +
π4ϵ4

20

)

+ x−4ϵ

(

π2ϵ2

12
+

(

iπ3

6
+

7ζ3
2

)

ϵ3 + 7iπζ3ϵ
4

)

− x−3ϵ
(π2ϵ2

6
+

(

iπ3

6
+ 4ζ3

)

ϵ3 +

(

π4

24
+ 4iπζ3

)

ϵ4
)

,

p1

p2 p4

p3

gP13
26 = ϵ4(p21(p

2
3 − s) + st)G1,0,1,1,1,1,1,0,0 , (7.59)

fP13
26 ∼ 0 ,

p1

p2 p4

p3

gP13
27 = ϵ4[p21p

2
3 + s(t− p23)]G1,1,1,0,1,1,1,0,0 , (7.60)

fP13
27 ∼ −x−3ϵ

(

π2ϵ2

3
+

(

8ζ3 +
iπ3

3

)

ϵ3 +

(

π4

12
+ 8iπζ3

)

ϵ4
)

+ x−2ϵ

(

π2ϵ2

4
+

3ζ3ϵ3

2
+

3π4ϵ4

40

)

+
x−4ϵ

2

(

π2ϵ2

6
+

(

iπ3

3
+ 7ζ3

)

ϵ3 + 14iπζ3ϵ
4

)

,

p1

p2 p4

p3

gP13
28 = ϵ4s2tG1,1,1,1,1,1,1,0,0 , (7.61)

fP13
28 ∼ −x−2ϵ

(

1 +
5π2ϵ2

12
+

29ζ3ϵ3

2
+

71π4ϵ4

360

)

+ x−3ϵ

(

1 + iπϵ+

(

iπ3

3
+ 18ζ3

)

ϵ3 +

(

4π4

15
+ 18iπζ3

)

ϵ4
)

− x−4ϵ

(

1

4
+

iπϵ

2
−

5π2ϵ2

12
−

(

iπ3

6
−

7ζ3
2

)

ϵ3 +

(

π4

6
+ 7iπζ3

)

ϵ4
)

,
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p1

p2 p4

p3

gP23
24 = 4ϵ4(p23 − s)G1,1,1,0,0,1,1,0,0 , (7.86)

fP23
24 ∼ −

π2ϵ2

3
−

(

2iπ3

3
+ 2ζ3

)

ϵ3 +

(

17π4

30
− 4iπζ3

)

ϵ4

− x−2ϵ

(

π2ϵ2

3
+ 14ζ3ϵ

3 +
2π4ϵ4

3

)

+ x−ϵ

(

2π2ϵ2

3
+

(

2iπ3

3
+ 16ζ3

)

ϵ3 +

(

π4

6
+ 16iπζ3

)

ϵ4
)

,

p1

p2 p4

p3 gP23
25 = 4ϵ4s(p22 − t)G0,1,1,1,1,1,1,0,0 , (7.87)

fP23
25 ∼ x−4ϵ

(

−
8iπϵ

3
+ 5π2ϵ2 +

(

34iπ3

9
+ 10ζ3

)

ϵ3 +

(

−
67π4

45
+

76iπζ3
3

)

ϵ4
)

+ 4iπϵx−4ϵ[(z − y)(1− z)]−2ϵ −
4iπϵ

3
N3x

−4ϵ[(y − z)(1− z)]−3ϵ,

p1

p2 p4

p3

gP23
26 = 4ϵ4s(p23 − t)G1,1,1,0,1,1,1,0,0 , (7.88)

fP23
26 ∼ x−4ϵ

(

−1−
2iπϵ

3
−

π2ϵ2

3
+

(

−
2iπ3

9
+ 2ζ3

)

ϵ3 +

(

7π4

90
+

4iπζ3
3

)

ϵ4
)

+ x−ϵ

(

2 + 2iπϵ+

(

2iπ3

3
+ 36ζ3

)

ϵ3 +

(

8π4

15
+ 36iπζ3

)

ϵ4
)

− x−2ϵ

[

5 + 8iπϵ−
23π2ϵ2

3
−

(

16iπ3

3
− 38ζ3

)

ϵ3 +

(

56π4

15
+ 48iπζ3

)

ϵ4
]

+ 4x−3ϵN1 + 4iπϵx−3ϵ [(y − z)(1− z)]−2ϵ

−
4iπϵ

3
N3x

−4ϵ [(z − y)(1− z)]−3ϵ ,

p1

p2 p4

p3
gP23
27 = −4ϵ4s(−p22p

2
3 + st)G1,1,1,1,1,1,1,0,0 , (7.89)

fP23
27 ∼ −8iπϵ

(

1− 3iπϵ+
π2ϵ2

2
− 15ζ(3)ϵ3

)

((z − y)−2ϵ(1− z)−2ϵx−4ϵ

+ 24iπϵ2x−4ϵ [(z − y)(1− z)]−2ϵ ln((z − y)(1− z))

+ 8iπϵN3x
−4ϵ [(z − y)(1− z)]−3ϵ ,
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p3

p2

p1

p4

gN12
32 = ϵ4

(

(t− p21)G0,0,1,1,1,1,1,0,0 + (p21 − s− t)G0,1,1,1,1,1,1,0,−1

)

, (5.7)

fN12
32 ∼ −

1

4
−

iπϵ

2
+

11π2ϵ2

12
+

(

7iπ3

6
+

17ζ3
2

)

ϵ3 −

(

55π4

72
− 17iπζ3

)

ϵ4

+ x−2ϵ

(

1

4
−

π2ϵ2

12
−

7ζ3ϵ3

2
−

π4ϵ4

6

)

,

p3

p2

p1

p4

gN12
33 = ϵ4st

[

G0,1,1,1,1,1,1,0,0 +G1,0,1,1,1,1,1,0,0

− G1,1,1,1,1,1,1,−1,0 + sG1,1,1,1,1,1,1,0,0

]

, (5.8)

fN12
33 ∼ −

x−2ϵ

2

(

1−
π2ϵ2

6
− 7ζ3ϵ

3 −
π4ϵ4

3

)

+
x−4ϵ

4

(

1 + 6iπϵ−
26π2ϵ2

3
+ (8ζ3 −

20iπ3

3
)ϵ3 +

(

208π4

45
− 16iπζ3

)

ϵ4
)

− iπϵx−4ϵ [(z − y)(1 − z)]−2ϵ ,

p3

p2

p1

p4

gN12
34 = −ϵ4suG1,1,1,1,1,1,1,−1,0 , (5.9)

fN12
34 ∼

x−2ϵ

2

(

1−
π2ϵ2

6
− 7ζ3ϵ

3 −
π4ϵ4

3

)

−
x−4ϵ

4

(

1 + 6iπϵ−
26π2ϵ2

3
+ (8ζ3 −

20iπ3

3
)ϵ3 +

(

208π4

45
− 16iπζ3

)

ϵ4
)

+ iπϵx−4ϵ [(z − y)(1− z)]−2ϵ ,

p3

p2

p1

p4

gN12
35 = ϵ4R12

[

G0,0,1,1,1,1,1,0,0 −G0,1,1,1,1,1,1,0,−1

− G1,0,1,1,1,1,1,0,−1 − sG1,1,1,1,1,1,1,−1,0 +G1,1,1,1,1,1,1,0,−2

]

, (5.10)

fN12
35 ∼ 0,

There are nine non-planar master integrals in the family N13. These integrals, together
with their limits in the kinematic point x → 0, y → 1, z → 1 are

p3

p2

p1

p4

gN13
33 = ϵ4p23tG0,1,1,1,1,1,1,0,0 , (5.11)

fN13
33 ∼ 1 + 2iπϵ−

17π2ϵ2

6
− (3iπ3 + 17ζ3)ϵ

3 +

(

67π4

36
− 34iπζ3

)

ϵ4

− x−2ϵ
(

1−
π2ϵ2

6
− 7ζ3ϵ

3 −
π4ϵ4

3

)

+
e2iπϵ

4
x−4ϵ

− iπϵx−4ϵ [(z − y)(1− z)]−2ϵ ,
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p3

p2

p1

p4

fN13
38 = ϵ4

(

−tG0,0,1,1,1,1,1,0,0 + (−p23 + s+ t)G1,0,1,1,1,1,1,0,−1

)

, (5.16)

fN13
38 ∼

π2ϵ2

12
+ ϵ3

(

ζ3
2

+
iπ3

6

)

− ϵ4
(

17π4

120
− iπζ3

)

+ x−2ϵ

[

1

2
−

π2ϵ2

12
−

7ζ3ϵ3

2
−

π4ϵ4

6

]

− x−3ϵ

[

1 + iπϵ−
2π2ϵ2

3
+

(

2ζ3 −
iπ3

3

)

ϵ3 +

(

π4

10
+ 2iπζ3

)

ϵ4
]

+ x−4ϵ

[

1

2
+

2iπϵ

3
−

5π2ϵ2

12
−

(

ζ3
2

+
5iπ3

18

)

ϵ3 +

(

53π4

360
−

iπζ3
3

)

ϵ4
]

+
iϵπ

3
x−4ϵ [(z − y)(1 − z)]−3ϵ N3 ,

p1

p2

p3

p4

gN13
40 = ϵ4(p23 − s)2G1,1,1,1,0,1,1,0,0 , (5.17)

fN13
40 ∼ 1 + 2iπϵ−

17π2ϵ2

6
− ϵ3

(

17ζ3 + 3iπ3
)

+ ϵ4
(

67π4

36
− 34iπζ3

)

− x−ϵ

[

2 + 2iπϵ− 2π2ϵ2 −

(

12ζ3 +
4iπ3

3

)

ϵ3 +

(

π4

30
− 12iπζ3

)

ϵ4
]

+ x−2ϵ

[

1−
π2ϵ2

6
− 7ϵ3ζ3 −

π4ϵ4

3

]

,

p3

p2

p1

p4

gN13
42 = ϵ4st

[

G0,1,1,1,1,1,1,0,0 +G1,0,1,1,1,1,1,0,0 −G1,1,1,1,1,1,1,0,−1 (5.18)

− p23G1,1,1,1,1,1,1,0,0 + sG1,1,1,1,1,1,1,0,0

]

,

fN13
42 ∼ x−4ϵ

(

3

4
+

7iπϵ

6
−

11π2ϵ2

12
−

(

ζ3
2

+
11

18
iπ3

)

ϵ3 −

(

1

3
iπζ3 +

113π4

360

)

ϵ4
)

− x−3ϵ

(

1 + iπϵ−
2π2ϵ2

3
+

(

2ζ3 −
1

3
iπ3

)

ϵ3 +

(

2iπζ3 +
π4

10

)

ϵ4
)

− x−2ϵ

(

3

2
−

π2ϵ2

4
−

21ϵ3ζ3
2

−
π4ϵ4

2

)

+ x−ϵ

(

2 + 2iπϵ− 2π2ϵ2 −

(

12ζ3 +
4

3
iπ3

)

ϵ3 −

(

12iπζ3 −
π4

30

)

ϵ4
)

+
iπϵ

3
[(z − y)(1− z)]−3ϵ x−4ϵN3 − 2iπϵ[(z − y)(1 − z)]−2ϵx−3ϵ,

p3

p2

p1

p4

gN13
43 = ϵ4

[

p21(p
2
3 − s) + s(s+ t− p23)

]

G1,1,1,1,1,1,1,0,−1, (5.19)

fN13
43 ∼ iπϵ [(z − y)(1− z)]−2ϵ (6x−3ϵ − 3x−4ϵ

)

− 2iπϵ [(z − y)(1− z)]−3ϵ x−4ϵN3 ,

Non-planar master integrals that appear for the family N34 are shown below. The bound-
ary conditions are derived by considering the limit x → 0, y → 0 and z → 1. The results
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p1

p2

p3

p4

gN34
47 = ϵ4(p23 + (p24 − s)2 − 2p23(p

2
4 + s))G1,1,1,1,0,1,1,0,0 , (5.24)

fN34
47 ∼ 0

p3

p2

p1

p4

gN34
50 =

[

2(p23 + p24 − s)
]

−1
ϵ4s
[

− 2p23p
2
4G0,1,1,1,1,1,1,0,0 − 2p23p

2
4G1,0,1,1,1,1,1,0,0

− (p43 + (p24 − s)(p24 − s− t)− p23(2s+ t))G1,1,1,1,1,1,1,0,−1

+ (2p23p
2
4 − p23t− p24t+ st)(G0,1,1,1,1,1,1,0,0 +G1,0,1,1,1,1,1,0,0 (5.25)

− G1,1,1,1,1,1,1,0,−1 − (p23 + p24 − s)G1,1,1,1,1,1,1,0,0)
]

,

fN34
50 ∼ −x−4ϵ

(

1

2
+

2iπϵ

3
−

5π2ϵ2

12
−

(

ζ3
2

+
5iπ3

18

)

ϵ3 +

(

+
53π4

360
−

iπζ3
3

)

ϵ4
)

+ x−3ϵ

(

1 + iπϵ−
2π2ϵ2

3
+

(

2ζ3 −
iπ3

3

)

ϵ3 +

(

π4

10
+ 2iπζ3

)

ϵ4
)

− x−2ϵ

(

1

2
−

π2ϵ2

12
−

7ϵ3ζ3
2

−
π4ϵ4

6

)

+
5iπϵ

3

[

4y2(1 − z)
]

−3ϵ
x−4ϵN3 ,

p3

p2

p1

p4

gN34
51 = −

[

p23 + p24 − s
]

−1
ϵ4R34

[

(t− p24)(s− p23 − p24)G0,1,1,1,1,1,1,0,0

+ (t− p23)(s− p23 − p24)G1,0,1,1,1,1,1,0,0

− (p23 + p24 − s)s(G1,1,1,1,1,1,1,0,−1 + tG1,1,1,1,1,1,1,0,0)
]

, (5.26)

fN34
51 ∼ 0,

To illustrate how analytic results look like, we provide contributions through O(ϵ2) for

three different master integrals. We introduce the following notation

a1 = z − 1, a2 = (1 + x)/x, a3 = (1 + x(1− z))/x,

a4 =
1 + y + xy + xy2

2(1 + x)y
, a5 =

1− y − xy + xy2

2(1 + x)y
, a6 =

1 + xy

2xy
.

(5.27)

For the three integrals that we show below, we separate real and imaginary parts and

write

fNIJ
i = RefNIJ

i + iImfNIJ
i , (5.28)

– 13 –

N34, 51 MIN13, 43 MIN12, 35 MI

P13, 29 MIP12, 31 MI P13, 28 MI



Evaluating MI

•A lot of different two-loop integrals to evaluate

•Although there are several overlaps between 
different families (bubbles, triangles…), still              
~ hundred integrals to compute

•Some are easy, but many are very complicated

•Ideally, we would like to avoid a brute force 
computation of individual integrals

•Can we group ‘nicely’ the integrals?

•Can we integrated many of them at once?



Preliminary: loop integrals via differential equations
[Kotikov (1991), Remiddi (1997)]

•Loop integrals in generic kinematics: very hard

•In general however, they simplify for specific 
kinematics configurations (threshold, high-energy…)

•If derivatives of MI are known, one can use them to 
transport simple kinematics to generic kinematics

•Taking derivatives of MI: ~ IBP procedure -> 
DERIVATIVES OF MI ARE LINEAR COMBINATIONS OF MI

@

x

~

f(x) = A(✏, x) · ~f(x)



Preliminary: loop integrals via differential equations

•Hard problem split into two somewhat simpler 
1. solving the differential equation
2. evaluating boundary values

•Group together several master integrals

•If we would be able to integrate the system in its 
matrix form, problem solved at once

•However, for generic A, this is obviously impossible: 
highly coupled differential equations in many 
variables…

@

x

~

f(x) = A(✏, x) · ~f(x)



Differential equations made simple

•We are dealing with a physical problem ->                        
A IS NOT A GENERIC FUNCTION, constrains from singularity 
structure of Feynman integrals

@

x

~

f(x) = A(✏, x) · ~f(x)
[Henn (2013)]

•Near singular points (threshold,…): f(x) ⇠ (x� x0)
a(✏)

•System can be put in a Fuchsian form (i.e. singularity 
structure can be made manifest)

@

x

~g(x) =
X

i

A

i

(✏)

(x� x

i

)
~g(x) g(x) = T (x, ✏)f(x)( )



Differential equations made simple

@

x

~

f(x) = A(✏, x) · ~f(x)

•Near singular points (threshold,…):                        
with a linear in ε (theory of asymptotic expansions)

f(x) ⇠ (x� x0)
a(✏)

•Simplest possible case:

@

x

~g(x) =
X

i

A

i

(✏)

(x� x

i

)
~g(x)

@

x

~

h(x) = ✏

X

i

A

i

(x� x

i

)
~

h(x)

•While this last step not possible in general, it is POSSIBLE FOR 
OUR MASTER INTEGRALS (as well as for many other examples 
involving massless propagators)

• (Algorithmic to tell whether Ai(ε) -> ε Ai: [R. Lee (2014)])

d

~

h(x) = ✏

X

i

Aid ln(x� xi)~h(x)or



Integrating the differential equations:

@

x

~

f(x) = A(✏, x) · ~f(x)

•While in general integrating the system can still be hard, 
it is trivial to get an expansion around ε = 0 in terms of 
iterated integrals.

@

x

~

h(x) = ✏

X

i

A

i

(x� x

i

)
~

h(x)

G(a1, ..., an; z) =

Z z

0

dt

t� a1
G(a2, ..., an; t)

•All the system can be integrated at once and expressed 
in terms of Goncharov poly-logarithms

G(a1; z) =

Z z

0

dt

t� a1

• If coefficients of MI in the amplitude do not have spurious 
1/ε singularities: results only up to weight 4 are needed



Differential equations made simple: recap

@

x

~

f(x) = A(✏, x) · ~f(x)

If a change of basis can put the MI in a ‘canonical form’:
• all integrals can be straightforwardly evaluated at once, 
as a series expansion in ε. THE SIZE OF THE SYSTEM IS 
IRRELEVANT

•results are expressible in terms of Goncharov poly-
logarithms (numerical implementations available, GiNaC)

•at a given order in ε, the solution is a pure-function (no 
rational pre-factors) of uniform weight

@

x

~

h(x) = ✏

X

i

A

i

(x� x

i

)
~

h(x)

HOW CAN WE FIND A CANONICAL FORM?



The canonical form for gg->VV: 1-loop

P12 family at 1-loop: 6 independent master integrals

x4 (s,t,M32,M42)

As it is, not in a canonical form. To get there: solution in the 
canonical form must be pure function of uniform weight

B ⇠ (p2)�✏

✏(1� 2✏)
=

1

✏

⇥
1 + ✏(� ln p2+2) + ...

⇤
�! B ! (1� 2✏)B

Simple integrals: fix by hand



The canonical form for gg->VV: 1-loop
Canonical form: pure function of uniform weight

This property must reflect in the cut-structure of the integral

The canonical form for gg->VV: 1-loop

P12 family at 1-loop: 6 independent master integrals

x4 (s,t,M32,M42)

As it is, not in a canonical form. To get there: solution in the 
canonical form must be pure function of uniform weight

B ⇠ (p2)�✏

✏(1� 2✏)
=

1

✏

⇥
1 + ✏(� ln p2+2) + ...

⇤
�! B ! (1� 2✏)B

Simple integrals: fix by hand

J =
1

st
Good candidate:

D ! stDThe canonical form for gg->VV: 1-loop

P12 family at 1-loop: 6 independent master integrals

x4 (s,t,M32,M42)

As it is, not in a canonical form. To get there: solution in the 
canonical form must be pure function of uniform weight

B ⇠ (p2)�✏

✏(1� 2✏)
=

1

✏

⇥
1 + ✏(� ln p2+2) + ...

⇤
�! B ! (1� 2✏)B

Simple integrals: fix by hand

Z
dt

t

1p
� C !

p
�C

Good candidate:

� = s2 +m4
3 +m4

4 � 2(sm2
3 + sm2

4 +m2
3m

2
4)



The canonical form for gg->VV: 1-loop

This guess turns out to be right -> CANONICAL FORM

D ! stD C !
p
�C B ! (1� 2✏)B

d~f(s, t,mi) = ✏
X

k

Aid ln(↵k)~f(s, t,mi)

↵ =
n
s, t,m2

i ,m
2
i � t, p2?,�,

p
��m2

3 �m2
4 + s,

(m2
3 +m2

4)s� (m2
3 �m2

4)(
p
�+m2

3 �m2
4),

m2
3m

2
4(
p
��m2

3 �m2
4 + s) + 4m2

3m
2
4t� t2(

p
�� s+m2

3 +m2
4)
o



The canonical form for gg->VV: 2-loop

Example: complicated P12 structures

p1

p2
p4

p3
gP12
26 = ϵ3R12sG1,1,1,2,1,0,0,0,0 , (7.28)

fP12
26 ∼ 0,

p1

p2 p4

p3
gP12
27 = −ϵ4s(p22 − t)G0,1,1,1,1,1,1,0,0 , (7.29)

fP12
27 ∼

e2iπϵx−4ϵ

4
+

3x−2ϵ

4
− x−3ϵN1,

p1

p2 p4

p3
gP12
28 = −ϵ4s(p21 − t)G1,0,1,1,1,1,1,0,0 , (7.30)

fP12
28 ∼ −

e2iπϵ

4

(

1 + ϵ2π2 + 30ζ3ϵ
3 +

7ϵ4π4

10

)

+
x−2ϵ

4

(

1 +
π2ϵ2

3
+ 14ζ3ϵ

3 +
2π4ϵ4

3

)

,

p1

p2 p4

p3
gP12
29 = ϵ4 s2 t G1,1,1,1,1,1,1,0,0 , , (7.31)

fP12
29 ∼ −

e2iπϵx−4ϵ

4
+ x−3ϵN1 −

x−2ϵ

2

(

2 +
π2ϵ2

6
+ 7ζ3ϵ

3 +
π4ϵ4

3

)

,

p1

p2 p4

p3 gP12
30 = ϵ2

[

−
1

2
ϵ p21sG0,1,1,0,1,2,1,0,0 −

1

2
ϵ p22sG1,0,0,1,1,2,1,0,0 , (7.32)

+ϵ(p21 + p22)sG1,1,0,0,1,1,2,0,0 + ϵ2s2G1,1,1,1,1,1,1,−1,0

]

,

fP12
30 ∼

3

4
x−2ϵ −

x−3ϵ

2
N1,

p1

p2 p4

p3

gP12
31 = ϵ4R12sG1,1,1,1,1,1,1,0,−1 , (7.33)

fP12
31 = 0.

The master integrals for the family P13 and their limits in the kinematic point x →
0, y → 1, z → 1 read

p1

p2 p4

p3

gP13
1 = ϵ2tG0,0,0,0,1,2,2,0,0 , (7.34)

fP13
1 ∼ −e2iπϵ,

p1

p2 p4

p3
gP13
2 = ϵ2p21G0,0,1,0,2,2,0,0,0 , (7.35)

fP13
2 ∼ −e2iπϵ,
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I =

Z
ddkddl

N(k)

k2(k + p1)2(k + p12)2l2(l + p1)2(l � p3)2(k � l)2

k l Z
ddk


1

s(k � p3)2

�
N(k)

k2(k + p1)2(k + p12)2

Good candidates: N(k) = s2t, N(k) = s(k � p3)
2
p
�

The canonical form for gg->VV: 1-loop

P12 family at 1-loop: 6 independent master integrals

x4 (s,t,M32,M42)

As it is, not in a canonical form. To get there: solution in the 
canonical form must be pure function of uniform weight

B ⇠ (p2)�✏

✏(1� 2✏)
=

1

✏

⇥
1 + ✏(� ln p2+2) + ...

⇤
�! B ! (1� 2✏)B

Simple integrals: fix by hand

The canonical form for gg->VV: 1-loop

P12 family at 1-loop: 6 independent master integrals

x4 (s,t,M32,M42)

As it is, not in a canonical form. To get there: solution in the 
canonical form must be pure function of uniform weight

B ⇠ (p2)�✏

✏(1� 2✏)
=

1

✏

⇥
1 + ✏(� ln p2+2) + ...

⇤
�! B ! (1� 2✏)B

Simple integrals: fix by hand
As in the 1-loop cases, these ansatz proves correct

USING THESE IDEAS, FULL CANONICAL BASIS CAN BE FOUND



Integrating the canonical form: square roots

d~f(s, t,mi) = ✏
X

k

Aid ln(↵k)~f(s, t,mi)

G(a1, ..., an; z) =

Z z

0

dt

t� a1
G(a2, ..., an; t)

3-mass triangle: square-root singularity in the diff. eq. 
Evaluation in terms of Goncharov poly-logarithms problematic

To solve this problem: 
rational re-mapping to eliminate all square-roots

s ! m

2
3(1 + x)(1 + xy), t ! �m

2
3xz, m

2
4 ! m

2
3x

2
y

Physical region x>0, 0<y<z<1: alphabet is sign-definite 

↵ =
�
x, y, z, 1 + x, 1� y, 1� z, 1 + xy,�y + z, 1 + y + xy � z, xy + z,

1 + x(1 + y � z), 1 + xz, 1 + y � z, xyz + z + x(�y + z), xyz � y + yz + z

 



The last step: fixing the boundary condition

So far, only solved half of the problem. Diff. Eq. must be 
supplemented by appropriate boundary conditions 

Although much simpler than the full integral, computing 
results in specific kinematics configuration can still be 
challenging

Thanks to its manifest singularity structure, the differential 
equation in the canonical form + physics intuition can help 
to reduce these computations to a minimum



The last step: fixing the boundary condition

Example: boundary condition for 1-loop box

As a boundary condition, we considered 
forward scattering at threshold, with M42/ M32 -> 0

The canonical form for gg->VV: 1-loop

P12 family at 1-loop: 6 independent master integrals

x4 (s,t,M32,M42)

As it is, not in a canonical form. To get there: solution in the 
canonical form must be pure function of uniform weight

B ⇠ (p2)�✏

✏(1� 2✏)
=

1

✏

⇥
1 + ✏(� ln p2+2) + ...

⇤
�! B ! (1� 2✏)B

Simple integrals: fix by hand

In this limit, the diff. eq. develops a 
spurious DPS pT -> 0 singularity

@p?D =
✏

p?
(BM3 +BM4 +Bs � 2Bt � C �D)

This box cannot have such singularity ->
D = BM3 +BM4 +Bs � 2Bt � C �D

at the boundary, to all orders in ε



The last step: fixing the boundary condition

•Similar arguments can be used to obtain other 
non-trivial boundary conditions

•THESE ARGUMENTS APPLY VERBATIM AT TWO-LOOP

•As a consequence, VIRTUALLY ALL BC FOR THE GG-
>VV AMPLITUDE CAN BE FIXED BY CONSISTENCY 
RELATIONS, without doing an actual computation 

•As a check, we recomputed brute-force the 
(very hard!) boundary conditions. Full agreement 
is observed



MI for gg->VV: final remarks

•Thanks to new ideas for multi-loop computations, this 
very hard problem can be made relatively simple

• all MI have been computed, in terms of Goncharov Poly-
Logs (numerical evaluation: GiNaC [Vollinga, Weinzierl (2005)])

• In principle possible to remap GNs in terms of classical 
poly-logarithms plus one extra function, i.e. Li22             
(in-house numerical implementation -> improved speed-stability)

•Checks on the result:
• against results in special cases ([Gehrmann et al, (2014)])
• numerically for one phase-space point (FIESTA)
• after our result was published, independently reproduced by two 

groups ([Papadopoulos, Tommasini, Wever, (2014); v. Manteuffel, Tancredi 
(to appear)])



The gg->VV 2-loop amplitude

8

amplitude A in Eq.(7) through nine independent Lorentz structures

A�1�2 =N�1�2

"

F �1�2
1 p1 · ✏4p1 · ✏3 + F �1�2

2 p1 · ✏4p2 · ✏3 + F �1�2
3 p1 · ✏3p2 · ✏4

+ F �1�2
4 p2 · ✏4p2 · ✏3 + F �1�2

5 ✏4 · ✏3 + i✏µ⌫↵�p
µ
1p

⌫
2p

↵
?

✏�4

⇣

F �1�2
6 p1 · ✏3 + F �1�2

7 p2 · ✏3
⌘

+ i✏µ⌫↵�p
µ
1p

⌫
2p

↵
?

✏�3

⇣

F �1�2
8 p1 · ✏4 + F �1�2

9 p2 · ✏4
⌘

#

,

(16)

where N�1�2 are the normalization factors for left-left and left-right polarization cases

NLL =

h12i
[12]s

, NLR =

h1p̂
?

2]

[1p̂
?

2ip2
?

s2
. (17)

To account for transitions of vector bosons to final state leptons, their polarization vectors are

replaced by matrix elements of vector and axial-vector currents. We therefore choose

✏µ3L = h5|�µ|6], ✏µ3R = h6|�µ|5], ✏µ4L = h7|�µ|8], ✏µ4R = h8|�µ|7]. (18)

We note that, although we need helicity amplitudes for all possible helicity combinations of leptons,

it is sufficient to compute just one of them since other helicity amplitudes can be obtained using

simple replacement rules. For example the right-handed polarization of the vector boson with

momentum p3 is obtained from the left-handed one upon the replacement 5 $ 6. Since form

factors Fi2{1..9} are independent of lepton momenta such a replacement does not affect them. x For

this reason we present helicity amplitude where polarization of both electroweak vector bosons is

taken to be left-handed. We find

A�1�2
3L4L =N�1�2

n⇣

F �1�2
1 h15i[61] + F �1�2

2 h25i[62]
⌘

h17i[81]

+

⇣

F �1�2
3 h15i[61] + F �1�2

4 h25i[62]
⌘

h27i[82] + 2F �1�2
5 h57i[86]

+

1

2

⇣

F �1�2
6 h15i[61] + F �1�2

7 h25i[62]
⌘⇣

h12ih78i[81][82] + h17ih27i[21][87]
⌘

� 1

2

⇣

F �1�2
8 h17i[81] + F �1�2

9 h27i[82]
⌘⇣

h12ih56i[61][62] + h15ih25i[21][65]
⌘o

.

(19)

The F form factors that enter the amplitude are expressed throught either T or G form factors.

This can be done in a straightforward way using Eqs.(7,13,15,16 ). Examples of corresponding

relations are shown in the Appendix.

III. CALCULATION OF THE AMPLITUDE

We apply the set-up described in the previous Section to the calculation of gluon-fusion amplitude.

There are 93 non-vanishing two-loop diagrams that contribute to gg ! V V amplitude; some

g(p1) + g(p2) !
⇥
V3(p3) ! l(p5)l̄(p6)

⇤
+

⇥
V4(p4) ! l(p7)l̄(p8)

⇤

Combining IBP reduction + MI in the form factors: FULL 
ANALYTIC EXPRESSIONS FOR THE 2-LOOP AMPLITUDE.
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momentum p3 is obtained from the left-handed one upon the replacement 5 $ 6. Since form
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The F form factors that enter the amplitude are expressed throught either T or G form factors.

This can be done in a straightforward way using Eqs.(7,13,15,16 ). Examples of corresponding

relations are shown in the Appendix.

III. CALCULATION OF THE AMPLITUDE

We apply the set-up described in the previous Section to the calculation of gluon-fusion amplitude.

There are 93 non-vanishing two-loop diagrams that contribute to gg ! V V amplitude; some

g(p1) + g(p2) !
⇥
V3(p3) ! l(p5)l̄(p6)

⇤
+

⇥
V4(p4) ! l(p7)l̄(p8)

⇤

Combining IBP reduction + MI in the form factors: FULL 
ANALYTIC EXPRESSIONS FOR THE 2-LOOP AMPLITUDE.



The gg->VV 2-loop amplitude: checks

•The infra-red singularity structure of the amplitude is 
known from first principles. In this case, it reads

•Highly non-trivial check on the computation, computation 
does not separate convergent and divergent part until the 
very end. 

•The above structure is not automatically manifest in the 
computation (nor in the actual result)

•CHECK ESTABLISHED NUMERICALLY, TO BETTER THAN 16 
DIGITS ACCURACY

A2 =

0

✏4
+

0

✏3
� C2

A

✏2
s�✏ei⇡✏A1 +O(✏0) (unrenorm.)



The gg->VV 2-loop amplitude: stability issues

•Already at one-loop, gg->VV amplitudes suffer from 
numerical instabilities created by spurious gram 
singularities. 

•Typical manifestation: (spurious) poles in pT,V. This region is 
not removed by experimental cuts (cut on leptons)

•At two-loop, the situation can only be worse. Potential to  
make the computation useless in practice

•To investigate this issue: compare final Fortran 
implementation with (basically) infinite precision in 
Mathematica



The gg->VV 2-loop amplitude: stability issues

The set-up: 
•√spart = 125 GeV, MV1 = 80.419 GeV, MV2 = 25 GeV

• scattering angles for leptons in the C.o.M. of the parent V: 
{θ56=π/4,φ56=π/2}; {θ78=π/6,φ78=π}

• Scan in the scattering angle of the VV system

g(p1) + g(p2) !
⇥
V3(p3) ! l(p5)l̄(p6)

⇤
+

⇥
V4(p4) ! l(p7)l̄(p8)

⇤
11

Helicity A1(✏ = 0) A(2)/A1(✏ = 0), 1/✏2 A(2)/A1(✏ = 0), 1/✏ A(2)/A1(✏ = 0), ✏0

LLLL �5169.9932 + i 10017.414 3.0 9.45694415 + i 16.4895884 �32.6156867 + i 65.01495

LRLL �6427.41534� i 2610.6160 3.0 14.9422361 + i 9.2198662 16.6441663 + i 71.66763

Table I: Leading and next-to-leading order helicity amplitudes. Momenta of external particles are given in

th emain text of the paper.
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Figure 2: The ratio of finite parts of two- and one-loop helicity amplitudes |A2(LL)+A2(LR)|/(|A1(LL)|+
|A1(LR)|) as a function of the vector-boson scattering angle.

the same kinematic point as described above but we treat the vector boson scattering angle as a

free parameter. We then compare the results of the double-precision implementation of the form

factors in a Fortran program with, effectively, arbitrary-precision calculation in Mathematica. We

find that helicity amplitudes computed in two different ways agree well for values of the scattering

angle as small ( large) as ✓ = 1 ( ✓ = 179) degrees. For such angles, the transverse momentum of

a vector boson is just 0.5 GeV. We therefore conclude that numerical implementation of helicity

amplitudes is sufficiently stable to allow their use in realistic numerical calculations. As a further

illustration of these numerical results, in Fig. 2 we show absolute values of helicity amplitudes as a

function of the scattering angle.

IV. CONCLUSIONS

In this paper, we computed helicity amplitudes for production of electroweak gauge bosons in gluon

fusion gg ! V1V2. The two electroweak gauge bosons are allowed to have different masses or be

off-shell; their decays to fermion pairs are taken into account explicitly. The helicity amplitudes for

gg ! V1V2 are described by nine helicity-dependent form factors. We construct projection operators

θ|A
L
L
+

A
L
R
|/
(|A

L
L
|+

|A
L
R
|)

•Result is stable down to 
θ~1//179º -> pT ~ 0.5 GeV

•COMPARABLE TO 1-LOOP 
STABILITY

•COMPUTATION IS RELIABLE



Conclusions
•4l final states very interesting processes at the LHC, 
both per se and in Higgs-related analysis

•NLO corrections are sizable ~ 50% -> need for NNLO
•Situation even worse for gg->VV, only known at LO

•Major bottleneck for such predictions: complicated 2-loop 
amplitudes (many different scales, full 2->2 topologies)

•Thanks to interesting new idea, these problems are 
manageable

•THE FULL 2-LOOP AMPLITUDE FOR GG->4L IS NOW AVAILABLE

•Along with our previous result for the qqb -> 4l amplitude, 
this REMOVES THE LAST OBSTACLE FOR PRECISE (F.O.) 
PREDICTIONS FOR (OFF-SHELL) PP->4L (leptons fiducial 
volume, signal/background interferences…)



Outlook

The technical part is gone -> 
NOW IT’S TIME FOR 
PHENOMENOLOGY

•Fully exclusive NNLO, matched with jet veto

•Phenonemological studies for H->WW* background

• gg->ZZ @ NLO and the Higgs off-shell cross-section

•PS @ NNLO in a more complicated environment?



Thank you 
for your attention



Backup



On-shell production: the WW puzzle
Naively, there seemed to be a slight tension between 

measurements / predictions for the total WW cross section

�ATLAS = 71.4± 5.6, �CMS = 69.9± 7.0

�NLO = 54.77± 1.6, �NNLO = 59.84± 1.3 pb

•Although not very significant, this drew a lot of attention 
as it has explanations in terms of natural SUSY          
[Meade et al. (2013-2014), Rolbiecki and Sakurai (2013)]  

• tension reduced at NNLO
•Measurements involve veto on jet activity -> theory used 
to extrapolate from fiducial to total cross-section may not 
be adequate [Meade, Ramani, Zeng (2014); Monni, Zanderighi (2014)]

• should compare FIDUCIAL CROSS-SECTIONS



On-shell production: the WW puzzle
Estimated cross section for the fiducial region               

from extrapolating NNLO+NNLL

•VERY GOOD AGREEMENT BETWEEN THEORY AND EXPERIMENT

• tension in the total cross section seems due to powheg 
overestimating Sudakov suppression and distortion of 
leptons pT, EXTRAPOLATION ISSUE [Monni, Zanderighi (2014)]

•Corrections to gg->4l can play a relevant role               
(~10% of NLO in the fiducial region, large corrections expected)

•To perform a full study: DIFFERENTIAL NNLO FOR PP -> 4L 
AND NLO FOR GG -> 4L HIGHLY DESIRABLE

�
ATLAS

(eµ) = 377.8± 27.3, �
ext,th

= 357.9± 14.4 fb

�
ATLAS

(ee) = 68.5± 8.5, �
ext,th

= 69.0± 2.7 fb

�
ATLAS

(µµ) = 74.4± 7.6, �
ext,th

= 75.1± 3.0 fb



Bounds on the Higgs width
[FC, Melnikov (2013)]

d�i!H!f

dM2
⇠

g2i g
2
f

�H

d�i!H!f

dM2
⇠

g2i g
2
f

(M2 �m2
H)2

110 120 130 140 150 160 170 180
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dσ
/d

M
2

M2

• On the peak, only access to 
coupling x BR

• Off the peak, ΓH independent

• Because of this, constraints 
on ΓH

g2i g
2
f

�H
=

g2i,SMg2f,SM
�H,SM

�! g = ⇠gSM, �H = ⇠4�H,SM

Noff
obs / g2i g

2
f = ⇠4g2i,SMg2f,SM / ⇠4Noff

SM =
�H

�H,SM
Noff

SM

• Peak looks SM-like ->

• Off the peak -> 

Bounds of the order ~ 10-20 ΓH,SM can be achieved 

Refined tools available [Kauer (2008, 2012); Campbell, Ellis, Williams (2013)]
Thorough phenomenological studies [Campbell, et al (2013-2014)]



Analysis is doable (and actually done)

5

As an illustration, Fig. 3(left) presents the 4` invariant mass distribution for the off-shell signal
region (m4` > 220 GeV) and for Dgg > 0.65. The expected contributions from the qq ! 4`
and reducible backgrounds, as well as for the total gluon fusion (gg) and vector boson fu-
sion (VV) contributions, including the Higgs boson signal, are shown. The distribution of the
likelihood discriminant Dgg for m4` > 330 GeV is shown in Fig. 3(right), together with the ex-
pected contributions from the SM. The expected m4` and Dgg distributions for the sum of all
the processes, with a Higgs boson width GH = 10 ⇥ GSM

H and a relative cross section with re-
spect to the SM cross section equal to unity in both gluon fusion and VBF production modes
(µ = µggH = µVBF = 1), are also shown. The expected and observed event yields in the off-shell
gg-enriched region defined by m4` � 330 GeV and Dgg > 0.65 are reported in Table 1.
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Figure 3: Distributions of (left) the four-lepton invariant mass after a selection requirement on
the MELA likelihood discriminant Dgg > 0.65, and (right) the Dgg likelihood discriminant for
m4` > 330 GeV in the 4` channel. Points represent the data, filled histograms the expected
contributions from the reducible (Z+X) and qq backgrounds, and from the gluon fusion (gg)
and vector boson fusion (VV) SM processes (including the Higgs boson mediated contribu-
tions). The dashed line corresponds to the total expected yield for a Higgs boson width of
GH = 10 ⇥ GSM

H . The parameters are set to µ = µggH = µVBF = 1. In the left plot the bin size
varies from 20 to 85 GeV and the last bin includes all entries with masses above 800 GeV.

The 2`2n analysis is performed on the 8 TeV data set only. The final state in the 2`2n channel
is characterized by two oppositely-charged leptons of the same flavour compatible with a Z
boson, together with a large Emiss

T from the undetectable neutrinos. We require Emiss
T > 80 GeV.

The event selection and background estimation is performed as described in Ref. [16], with the
exception that the jet categories defined in Ref. [16] are here grouped into a single category, i.e.
the analysis is performed in an inclusive way. The mT distribution in the off-shell signal region
(mT > 180 GeV) is shown in Fig. 4. The expected and observed event yields in a gg-enriched
region defined by mT > 350 GeV and Emiss

T > 100 GeV are reported in Table 1.

Systematic uncertainties comprise experimental uncertainties on the signal efficiency and back-
ground yield evaluation, as well as uncertainties on the signal and background from theoreti-
cal predictions. Since the measurement is performed in wide mZZ regions, there are sources of
systematic uncertainties that only affect the total normalization and others that affect both the
normalization and the shape of the observables used in this analysis. In the 4` final state, all the
systematic uncertainties on the signal and background normalization are partially correlated

Observed Median expected
RB

H∗ 0.5 1.0 2.0 0.5 1.0 2.0

cut-based 10.8 12.2 14.9 13.6 15.6 19.9
ME-based discriminant analysis 6.1 7.2 9.9 8.7 10.2 14.0

Table 3: The observed and expected 95% CL upper limits on µoff-shell in the cut-based and the ME-based
discriminant analyses in the 4ℓ channel, within the range of 0.5 < RB

H∗ < 2. The bold numbers correspond
to the limit assuming RB

H∗ = 1. The upper limits are evaluated using the CLs method, with the alternative
hypothesis RB

H∗ = 1 and µoff-shell = 1.
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Figure 6: Scan of the negative log-likelihood, −2 lnΛ, as a function of µoff-shell in the ZZ → 4ℓ channel
in the ME-based discriminant analysis. The black solid (dashed) line represents the observed (expected)
value including all systematic uncertainty, while the red dotted line is for the expected value without
systematic uncertainties. A relative gg→ ZZ background K-factor of RB

H∗=1 is assumed.
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CMS: ΓH < 5.4 ΓH,SM = 22 MeV @ 95CL

ATLAS: ΓH < 4.8-7.7 ΓH,SM = 20-32 MeV @ 95CL

Assuming correlation of on/off-shell couplings


