A Deep Observation of Gamma-ray Emission from Cassiopeia A using VERITAS

Augusto Ghiotto
For The VERITAS Collaboration
In this talk

• A brief survey of Cassiopeia A
• The VERITAS experiment
• Current Cassiopeia A results with VERITAS
A brief survey of Cas A

• Young Supernova Remnant: ~350 years*

• Located in our galaxy at a distance of ~3.4 kpc from us**

• Type IIb supernova, 15-25 M☉. Helium core-collapse red supergiant that lost its hydrogen envelope before exploding***

A brief survey of Cas A

One of the brightest radio sources* **

- Main fraction of the radio emission comes from reverse-shock
- Due to synchrotron radiation in which electrons are trapped and accelerated by the magnetic field

A brief survey of Cas A

Somewhat faint optical source

- Dominated by thermal emission due to reverse-ejecta and fast moving knots*

- Spitzer space telescope discovered a broadening of CO emission lines in the northern region of Cas A, indicating interaction between the shock front and molecular clouds**

A brief survey of Cas A

Extensively studied in X-rays by XMM-Newton, Chandra (0.1 to 10 keV) and NuSTAR (3 to 79 keV)

- Thermal X-ray emission is originated in the reverse-shocked ejecta, rich in highly ionized atoms* **

- Non-thermal (synchrotron) emission at both forward and reverse shock*** †

- NuSTAR observations (above 15 keV) also include interior knots as source for non-thermal X-ray emission‡

A brief survey of Cas A

• Very high energy (VHE) gamma-rays were first detected by HEGRA† (2001), and later confirmed by MAGIC†† and VERITAS ‡

• High energy (HE) gamma-rays (MeV to GeV) were first detected by Fermi-LAT in 2010*

• Subsequent Fermi-LAT data indicated a broken spectrum at around 1.72 GeV, favoring a hadronic emission model over a leptonic one** ***

A digression on the origin of cosmic rays

Augusto Ghiotto, DPF 2015
The VERITAS experiment

- The Very Energetic Radiation Imaging Telescope Array System consists of 4 ground-based telescopes located in southern Arizona (31 40N, 110 57W, 1.3km a.s.l.)
The VERITAS experiment
499 PMTs
3.5° field of view
0.15° spacing

Four 12 meter diameter telescopes
(106 m² total mirror area each)
The VERITAS experiment

- From 2007 to 2012, two major updates: 1) in 2009 a telescope was moved to make the array more symmetric; 2) 2011-12 installation of FPGA-based L2 trigger system and higher efficiency PMTs* **

- Currently, a source with a flux level of 1% of the Crab Nebula can be detected in 25h. The angular resolution for gamma-rays at 1 TeV is 0.08° and the sensitivity range spans from 85 GeV to 30 TeV.

The VERITAS experiment

- There are currently 54 sources detected by VERITAS
The VERITAS experiment

• The data analysis is performed in the following steps:

1. Image is calibrated and cleansed, selecting pixels with Cherenkov light and removing the ones with night sky background*
2. Hillas parameters are calculated (length, width and size of the image), allowing us to differentiate showers originated by gamma-rays from those originated by cosmic rays.**
3. The intersection of major axes of the shower images in the camera plane provides a geometric technique to locate the origin of the gamma-ray.

The VERITAS experiment
Current Cas A results with VERITAS

Cassiopeia A data were taken using all four telescopes under very dark and clear sky conditions.

Summary of our Cas A data

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Date</th>
<th>N_{tels}</th>
<th>θZ range (deg)</th>
<th>Average θZ (deg)</th>
<th>Wobble (deg)</th>
<th>Live Time (Hours)</th>
<th>Mean trigger rate (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>09/07 - 11/07</td>
<td>4</td>
<td>27-40</td>
<td>34</td>
<td>0.5</td>
<td>18</td>
<td>250</td>
</tr>
<tr>
<td>II</td>
<td>12/11 - 12/11</td>
<td>4</td>
<td>33-43</td>
<td>38</td>
<td>0.5</td>
<td>2</td>
<td>350</td>
</tr>
<tr>
<td>III</td>
<td>09/12 - 12/13</td>
<td>4</td>
<td>24-39</td>
<td>30</td>
<td>0.5</td>
<td>19</td>
<td>400</td>
</tr>
<tr>
<td>IV</td>
<td>09/12 - 12/13</td>
<td>4</td>
<td>40-64</td>
<td>56</td>
<td>0.5</td>
<td>25</td>
<td>300</td>
</tr>
</tbody>
</table>
Current Cas A results with VERITAS

Left: - Skymap from 18h of post-upgrades observations and at small zenith angles, significance of 11 σ.
- PSF in white. Cas A is a point source!
- Centroid (blue cross) at RA=$23^{h}23^{m}20.4^{s}$ ±0°.006stat ±0°.014sys and Dec= 58.817±0°.006stat ±0°.014sys

Right: Comparison of centroid positions from Fermi (yellow, *), VERITAS (green, **) and MAGIC (red, †) with the new VERITAS (white)

Current Cas A results with VERITAS

The spectral points are fitted with a power-law in the energy range from 300 GeV to 7 TeV, giving a χ^2 of 2.22 for 5 degrees of freedom, resulting in a good fit probability of 81%.

The differential energy spectrum for the whole data set is in agreement with previous results by HEGRA*, MAGIC**, and VERITAS.***

$$\frac{dN}{dE} = (1.45 \pm 0.11) \times 10^{-12} (E/1\text{TeV})^{-2.75 \pm 0.10_{\text{stat}} \pm 0.20_{\text{sys}}} \text{cm}^{-2} \text{s}^{-1} \text{TeV}^{-1}$$

Current Cas A results with VERITAS

VERITAS new data points combined with *Fermi*-LAT most recent results*

Augusto Ghiotto, DPF 2015
Current Cas A results with VERITAS

Power-law fits to the data. *Fermi*-LAT index: $-2.17 \pm 0.09_{\text{stat.}} +0.10/-0.05_{\text{syst.}}$. VERITAS index: $-2.75 \pm 0.10_{\text{stat.}} +/-0.20_{\text{syst}}$

Augusto Ghiotto, DPF 2015
Current Cas A results with VERITAS

Probability of PL/BPL = 0.010 (~2.5 sigma)
Probability of PL/CPL = 0.0045 (~2.8 sigma)

Current Cas A results with VERITAS

Hadronic model preferred for the GeV range; uncertain at the TeV range.

Conclusions and Prospects

• We were able to refine the VHE spectrum, both at lower and higher energy;

• We reduced statistical errors in the index and in the centroid location below the current systematic uncertainties. We will work on improving our systematics;

• There are prospects for a better analysis process for the large zenith angle data, important for the TeV-range spectrum.
Thank you!

This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, and by NSERC in Canada. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible.

Augusto Ghiotto
For The VERITAS Collaboration