Micro-pattern detectors based on plasma display panels: Past, present, and future developments

> Merlin Davies Tel Aviv University

DPF Conference August 5th 2015

The Collaboration

- University of Michigan, Department of Physics
 - J. W. Chapman, Claudio Ferretti, Dan Levin, Curtis Weaverdyck, Robert Ball, Bing Zhou, Michael Ausilio
- Tel Aviv University, School of Physics & Astronomy
 - Meny Ben Moshe, Yan Benhammou, Rivka Ben Simon, Merlin Davies, Erez Etzion
- Oak Ridge National Laboratory, Physics Division
 - Robert Varner
- Integrated Sensors, LLC (Toledo, OH)
 - Peter Friedman

Motivation : Plasma Panel Sensor (PPS)

Plasma Display Panel (PDP) Pixel Array

- Use each pixel as
 independent Geiger Mueller Counters
- Potentially high
 - Spatial and time resolution
 - Detection Efficiency

- Easily scalable
- Long life

The Basics

- Apply a High E-field on a Penning gas mixture
- Incident ionizing particles produce streamers in a cell leading to gas breakdown

- Cell recharges in time: R_qC
 - *R_q* is large enough to *quench* a continuous gas breakdown

PPS Design : First Prototype

E-field is well localized

COMSOL

Open cell prototype

modified commercial PDP

PPS : Typical Pulse

- Excellent Signal/Noise ratio
- Uniform shape throughout the panel
- Panel sealed 7 years prior

Merlin Davies Tel Aviv University Plasma Panel Detectors

- Source: ¹⁰⁶Ru β (3.54 MeV end-point)
- Electrode Pitch = 1.0 mm

Geant4 Simulation

Merlin Davies Tel Aviv University Plasma Panel Detectors

Hit Variance

Geant4 Simulation

- · Source:¹⁰⁶Ru β (3.54 MeV end-point)
- Electrode Pitch = 1.0 mm

Data

Moving the source across the panel

Reconstructed Position (mm) Linear Fit 18 $|slope| = 0.999 \pm 0.003$ 16 source motion step: 100 µm 14 12 10 8 _____ 2 3 1 5 8 10 6 11 Source Displacement (mm)

Able to reconstruct the position of the source in steps 10 times smaller than the electrode pitch

Data

The Micro-Cavity (MiC) : Conceptual Design

MiC : Cell Geometry

- Has 1x1x2 mm closed gas cells
- Individually quenched by an external 1 GΩ resistor
- Electric field of a few MV/m

The Micro-Cavity (MiC)

Front

MiC : Pulse Characteristics

Clean pulse : no amplification needed

Merlin Davies Tel Aviv University Plasma Panel Detectors

Experimental Setup

MiC : General Performance

- Using a collimated ¹⁰⁶Ru source placed directly above the micro-cavity
- All cells show very limited noise (10² better than the open cell prototype)
- The measured rates of each individual cell are similar

Merlin Davies Tel Aviv University Plasma Panel Detectors

MiC: Pixel Isolation

MiC: Pixel Efficiency

Merlin Davies Tel Aviv University Plasma Panel Detectors

MiC: Time Resolution

¹⁰⁶Ru β collimated source

Next Generation

- Developing a hexagonal design
 - Higher spatial coverage
 - Higher spatial resolution

- Pixel efficiency: $\approx 100\%$
- Time resolution: ≤ 1 ns
- Granularity: same level
- Spatial resolution: < 1 mm
- Wide response range: $\approx 1 \text{ Hz/cm}^2$ to at least 10^6 Hz/cm^2

150 µm

Commercial substrate

Conclusion

- Both prototypes show good
 - Spatial/Time resolution
 - Low spontaneous background
 - High efficiency
 - Cell isolation
- The Micro-Cavity greatly improves upon the PPS on all of these points
- Promising results towards a high performance particle detector that is
 - Gas sealed
 - Easily scalable
 - Long life

Thank You!

Merlin Davies Tel Aviv University Plasma Panel Detectors

Bonus Slides

Merlin Davies Tel Aviv University Plasma Panel Detectors

PPS : Tracking

Proof of concept

- Building an array of these panels for a *tracker*
- Optimizing gas composition to maximize efficiency
 - The nature of the quenching gas (CF₄, CO₂, etc...) and its proportion in the Penning mixture have a large impact on the performance of the panel

Flattened gas line

The commercial prototype

- β source sensitivity: ¹⁰⁶Ru : 39.4 KeV (Q-value)
- Source placed directly over 4 adjacent cells.

Merlin Davies Tel Aviv University Plasma Panel Detectors

Ultra Thin Glass Properties

Ultra-Slim Flexible Glass

Beam Energy Loss in UltraThin Glass vs. Ti-foil

Energy Loss in 25 µm *thick glass* cover PPS for selected Ion Beams (gas is 1mm of Ar at 760 Torr; *no nuclei get through the glass at 1MeV/A*)

Energy (MeV)/A	Ion Energy (MeV)	Energy loss in Glass (MeV)	Ener MeV	r gy loss in Gas (# ion pairs)
3.0 (Ni-64)	192	190	0.95	(36,000)
3.0 (Sn-124)	372	348	4.34	(160,000)
3.0 (U-238)	714	570	11.60	(440,000)

The Future is Flexible

- · Corning is currently proving the concept capability of thin, flexible glass an alternative to polymer films
- The optical, thermal and dimensional stability advantages of glass benefit performance for large-area
 electronics, such as e-paper, flexible photovoltaics, touch panels, OLED lighting and more
- Producing large-area electronic displays will require continuous platforms, such as roll-to-roll manufacturing

PPS : Simulated Field Properties

- Given the single volume gas geometry
 - The capacitance depends on the number of lines

Merlin Davies Tel Aviv University Plasma Panel Detectors

Origin of the first prototype:

