

Mu2e Tracker

Overview & Progress James L. Popp – For the Mu2e Tracker Group August 5, 2015

The Mu2e Muon Beamline

- **Production Solenoid**
 - 8 GeV p beam (8.3 kW) strikes pion production target (tungsten, 160 mm long, 63 mm dia.)
 - Pions decay to muons & gradients in B field push particles to the right
- **Transport Solenoid**
 - Toroidal B field & collimators perform sign and momentum selection
 - Produce mostly mu-minus with optimum momenta to stop in secondary target
- **Detector Solenoid**
 - Muons captured in Coulomb orbits in aluminum stopping target foils
 - Muons either: Decay in orbit, capture on nucleus, may convert directly to electron
 - Mu2e will directly measure conversion electrons with unprecedented sensitivity

Requirements

- Blind to DIO (muon decay in orbit)
 - r < 380 mm, no mass</p>
 - Completely bypass muon beam
 - 380 < r < 700 mm, low mass</p>
 - r > 700 mm
 - support structure
 - front end electronics
 - B_m(Z) = muon binding energy
 - C(A) = nuclear recoil energy

- Resolution
 - Momentum tails matter
 - Gaussian fit to high end
 - At 105 MeV/c, σ < 180 keV/c
 - Dominated by multiple scattering

Baseline Design

- Wound Mylar[®] straw drift tubes operated in vacuum
 - Inside: layer of aluminum with gold layer on top, Outside: layer of Al
 - Au-plated tungsten sense wire
 - 20736 straws filled w/Ar:CO₂ mixture (80:20) at 1 atm
 - Measure
 - Drift time (max 50 ns) for track distance from the wire: res. < 200 microns
 - Read out both ends wire, use pulse timing to determine position along wire: res. ~30 mm

3196 mm

4

Straw Planes

- Each plane has 2 circular rings
 - Plane has 6 panels, a panel has two straw layers
 - Each layer has 48 straws
 - 15 micron straw wall we are pushing the state-of-the-art here
 - Circular rings rotated 30 deg for stereo
 - Straw lengths: 430 mm 1200 mm, dia. 5.0 mm
 - Sense wire: 25 micron, gold-plated tungsten

Stress Relaxation

Straw Gas Leak/Permeation Tests

- See next talk: Dan Ambrose
 - Accelerated tests: CO₂ sensors
 - Vacuum tests: turbo + roots pump

gas feedthrough

Front End Electronics

- Digitizers & zero-suppression logic located on detector to minimize vacuum penetrations
- Electronics tests underway
- ADC to do Particle ID
 - For example, to reject protons from muon capture on the nucleus in stopping target

Current Panel Prototype 1.5

- Version 1.5
 - First leak test of manifold, straws + terminations as a single unit
 - Trouble-shooting manifold cover leaks
- Begin vacuum leak testing when
 - panel gas seal problem resolved
 - vacuum chamber & feedthroughs will be ready soon

Tracker Prototype Chamber Electronics

Time difference measured with Sr-90 at 3 positions along straw

- Shortest 8 straws of one panel
 - Further electronics tests
- Compact and mobile for beam tests, etc.
- Measured ~4.5 cm position resolution along straw using Sr-90 source
 - As tests continue we are confident that design resolution will be attained

Measured rate of cross talk using LBL 88 inch cyclotron proton beam

• In worst case 25% of proton hits produced a cross talk hit

- Cyclotron simulates protons from muon capture on nucleus
- This study gives an upper limit on the <u>relative loss</u> in conversion electron (acceptance times efficiency) from these additional background hits of 0.62%
 - Additional studies are planned

Summary

- Mu2e requires a low-mass tracker that can operate in vacuum
- The Mu2e baseline design
 - $-\,$ straw tube tracker, 15 μm thick straw walls, 5 mm diameter, dualended readout
- Developed 15 μm straws and demonstrated that their mechanical and gas permeability properties meet Mu2e requirements
- Preliminary designs of the tracker, supports, electronics, and services exist
 - built a single-panel prototype that will soon be tested in vacuum
 - built small scale prototypes to use in beam tests
 - the measured electronics performance and cross talk are satisfactory
- The final design of the tracker will be ready for CD-3 in 2016