



# Study of CP Asymmetry in $B^0 - \overline{B}^0$ Mixing Using Inclusive Dilepton Samples in BaBar

Tomo Miyashita

Caltech

On Behalf of the BaBar Collaboration

#### **DPF 2015**

University of Michigan August 4th, 2015





#### Overview

- "Study of CP asymmetry in  $B^0 \overline{B}^0$  mixing with inclusive dilepton events"
  - Published by PRL in February

Phys. Rev. Lett. 114, 081801 (2015)

• Time-independent update of a 2006 BaBar analysis

Phys. Rev. Lett. 96, 251802 (2006)





### **CP** Violation In Mixing

- Neutral B mesons may transform into their anti-particles through the weak interaction
- Under the Standard Model (SM) the probabilities  $\mathcal{P}(B^0 \to \overline{B}^0)$  and  $\mathcal{P}(\overline{B}^0 \to B^0)$  may be different
  - This implies both *CP* and *T* violation
  - Such "*CP* violation in mixing" was first observed in the neutral kaon system, but has not yet been observed with B mesons
  - Within the SM, we expect CP violation in B-mixing on the order of  $10^{-4}$ , but this could be altered by new physics in loops arXiv:1008.1593 [hep-ph]
- Prior to this analysis, the experimental average of CP asymmetry in  $B^0 \overline{B}^0$  mixing was  $A_{CP} = (2.3 \pm 2.6) \times 10^{-3}$  arXiv:1207.1158 [hep-ex]
  - Average dominated by BaBar, Belle, and D0 experiments





### **CP** Violation In Mixing II

• The neutral B system can be described using an effective hamiltonian so that:

$$irac{d}{dt}\left(egin{array}{c} |B(t)
angle \ |ar{B}(t)
angle \end{array}
ight) = \left(\hat{M} - rac{i}{2}\hat{\Gamma}
ight) \left(egin{array}{c} |B(t)
angle \ |ar{B}(t)
angle \end{array}
ight)$$

where, assuming CPT symmetry, the mass eigenstates are:

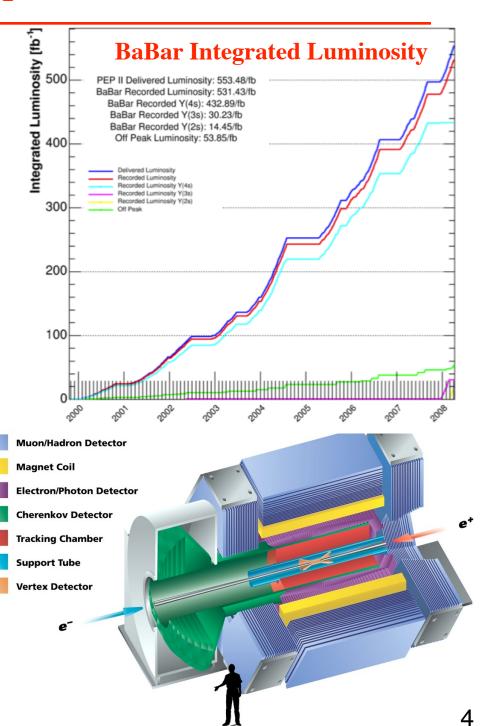
$$|B_{L/H}\rangle = rac{1}{\sqrt{p^2 + q^2}} (p|B^0\rangle \pm q|\overline{B}^0\rangle)$$

and the probabilities for mixing and decay to a flavor-specific final state are:

$$\mathcal{P}(B^0 \to \overline{B}^0 \to \overline{f})(t) \propto |q/p|^2 [\cosh(\Delta \Gamma t/2) - \cos(\Delta m t)]$$

$$\mathcal{P}(\overline{B}^0 \to B^0 \to f)(t) \propto |p/q|^2 [\cosh(\Delta \Gamma t/2) - \cos(\Delta m t)]$$

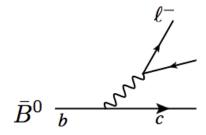
- If  $|q/p| \neq 1$ , then *CP* and *T* symmetry are violated
- Under these conventions, the CP/T asymmetry may be expressed as:


$$A_{CP} = \frac{\mathcal{P}(\overline{B}^{0} \to B^{0})(t) - \mathcal{P}(B^{0} \to \overline{B}^{0})(t)}{\mathcal{P}(\overline{B}^{0} \to B^{0})(t) + \mathcal{P}(B^{0} \to \overline{B}^{0})(t)} = \frac{1 - |q/p|^{4}}{1 + |q/p|^{4}} \simeq 2(1 - |q/p|)$$



## The BaBar Experiment

- Data collected by BaBar detector at SLAC National Accelerator Laboratory
- Asymmetric-energy  $e^+$  and  $e^-$  beams
  - $\implies e^+e^-$  CM boosted in lab frame
- Our analysis uses the full dataset of  $\sim 470 \times 10^6 \ B\overline{B}$  collected at the  $\Upsilon(4S)$  resonance
- Neutral *B* mesons are produced as entangled pairs






### **Dilepton Analysis**

- For this analysis, we use semileptonic B decays where  $\ell \in (e, \mu)$ 
  - The charge of the leptons provides the flavor of each *B* meson at the time it decayed
  - Mixing is indicated when the leptons from each *B* meson have the same charge:

$$\ell^+\ell^+ \implies \overline{B}^0 \to B^0$$
 $\ell^-\ell^- \implies B^0 \to \overline{B}^0$ 
 $\ell^+\ell^- \implies \text{No mixing}$ 



- An inclusive analysis provides us with increased statistics
- Mixing Probabilities:

$$\mathcal{P}^{\pm\pm}(\Delta t) \propto e^{-\Gamma|\Delta t|} |q/p|^{\mp 2} [\cosh(\Delta \Gamma \Delta t/2) - \cos(\Delta m \Delta t)]$$
  
$$\mathcal{P}^{\pm\mp}(\Delta t) \propto e^{-\Gamma|\Delta t|} [\cosh(\Delta \Gamma \Delta t/2) + \cos(\Delta m \Delta t)].$$

$$A_{CP} = \frac{\mathcal{P}(\Delta t)^{++} - \mathcal{P}(\Delta t)^{--}}{\mathcal{P}(\Delta t)^{++} + \mathcal{P}(\Delta t)^{--}} = \frac{|p/q|^2 - |q/p|^2}{|p/q|^2 + |q/p|^2}.$$

Time-integrated probability

$$\mathcal{P}^{\pm\pm}\propto (1\pm A_{CP})\chi_d$$
 $\mathcal{P}^{\pm\mp}\propto (1-\chi_d)$ 
mixing
probability
 $\chi_d=0.774\pm0.006$ 

### Analysis Strategy

• Taking into account the charge asymmetry  $a_{\ell_j}$  (for lepton  $\ell_j$ ) in detector efficiency, and contributions from  $B^+B^-$  events:

$$\mathcal{P}^{\pm\pm} \propto (1 \pm a_{\ell_1} \pm a_{\ell_2} \pm A_{CP}) \chi_d,$$
  $\mathcal{P}^{\pm\mp} \propto (1 \pm a_{\ell_1} \mp a_{\ell_2}) (1 - \chi_d + r_B)$ 

where 
$$r_B = N_{B^+B^-}/N_{B^0\overline{B}^0}$$

• Count 16 signal yields (two leptons ordered by CM  $p^*$ , each with two possible flavors  $e/\mu$  and two possible charges +/-):

$$\begin{split} N_{\ell_1 \ell_2}^{\pm \pm} &= \frac{1}{2} N_{\ell_1 \ell_2}^0 (1 \pm a_{\ell_1} \pm a_{\ell_2} \pm A_{CP}) \chi_d^{\ell_1 \ell_2}, \\ N_{\ell_1 \ell_2}^{\pm \mp} &= \frac{1}{2} N_{\ell_1 \ell_2}^0 (1 \pm a_{\ell_1} \mp a_{\ell_2}) (1 - \chi_d^{\ell_1 \ell_2} + r_B), \end{split}$$

where  $\chi_d^{\ell_1\ell_2}$  are effective mixing probabilities that take into account the slight efficiency difference between same-sign and opposite-sign samples

• Due to high correlations among  $a_{\ell_j}$  and  $A_{CP}$ , we use an additional constraint based on "single lepton" events:

$$a_{\rm on} = \alpha + \beta \chi_d A_{CP} + \gamma a_\ell$$
 (where  $a_\ell \equiv (a_{\ell_1} + a_{\ell_2})/2$ )





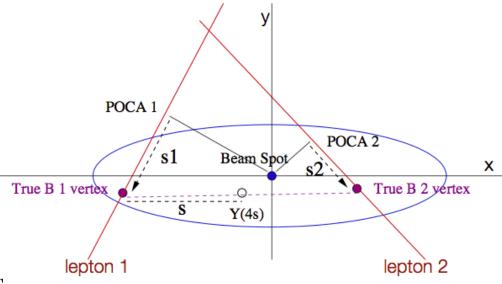
## Backgrounds

- We subtract a small background contribution from continuum  $e^+e^- \to f\overline{f}(\gamma)$  events (where  $f \in u, d, s, c, e, \mu, \tau$ ) using off-peak data
- The remaining background consists of  $B\overline{B}$  events where at least one lepton candidate comes from a  $B \to X \to \ell Y$  cascade, or from a hadron misidentified as a lepton
  - Including these contributions in the time-integrated signal yield equations we have:

$$M_{\ell_1\ell_2}^{\pm\pm} = \frac{1}{2} N_{\ell_1\ell_2}^0 (1 + R_{\ell_1\ell_2}^{\pm\pm}) \Big[ 1 \pm a_{\ell_1} \pm a_{\ell_2} \pm \frac{1 + \delta_{\ell_1\ell_2} R_{\ell_1\ell_2}^{\pm\pm}}{1 + R_{\ell_1\ell_2}^{\pm\pm}} A_{CP} \Big] \chi_d^{\ell_1\ell_2},$$

$$M_{\ell_1\ell_2}^{\pm\mp} = rac{1}{2} N_{\ell_1\ell_2}^0 (1 + R_{\ell_1\ell_2}^{\pm\mp}) (1 \pm a_{\ell_1} \mp a_{\ell_2}) (1 - \chi_d^{\ell_1\ell_2} + r_B),$$

where:  $R_{\ell_1\ell_2}^{\pm\pm}$  and  $R_{\ell_1\ell_2}^{\pm\mp}$  are bkg/sig ratios when  $A_{CP}=0$  and


 $\delta_{\ell_1\ell_2}$  is a dilution factor required because some same-sign background events have the right sign for a true mixed event and some do not

• Perform  $\chi^2$  fit using 8+8+1 equations to extract  $A_{CP}$ , 4  $B^0$  yields  $N_{\ell_1\ell_2}^0$ , 4 detector efficiency charge asymmetries  $a_{\ell_j}$ , and 4 effective mixing probabilities  $\chi_d^{\ell_1\ell_2}$ 

#### **Event Selection**

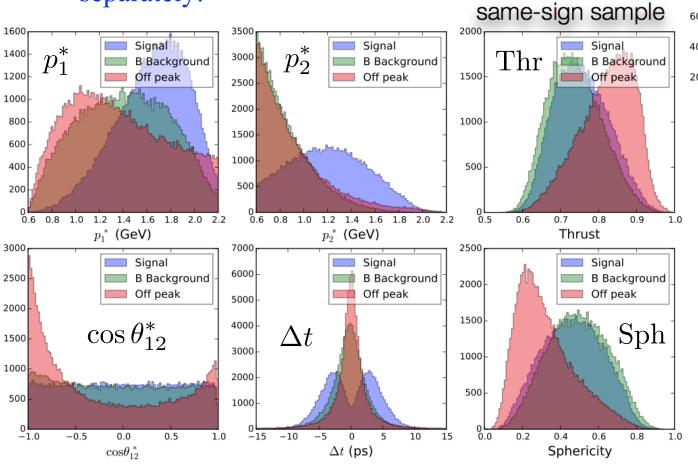
- Event shape consistent with a  $B\overline{B}$  decay (at least 4 tracks, approximately isotropic)
- Two tracks with  $p^* > 0.6 \text{ GeV}$  (or one for the single electron sample)
- Veto tracks consistent with photon conversion, or coming from  $J/\psi$  or  $\psi(2S)$  meson
- Misc quality and fiducial cuts
- Calculate  $\Delta t$  from the separation along the collision axis of the two points-of-closest-approach (POCA) of the lepton tracks to the beam spot and the CM boost factor of  $\sim 0.56$

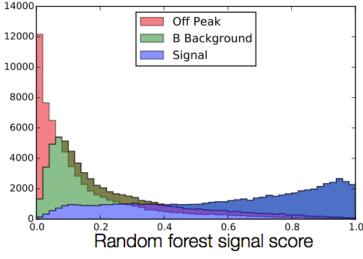
• Require  $|\Delta t| < 15 \text{ ps}, \ \sigma_{\Delta_t} < 3 \text{ ps}$ 

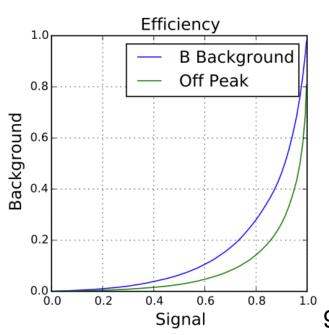







## Multivariate Background Suppression


• Continuum and *B* backgrounds are suppressed using a random forest (RF) discriminator


• A separate, 8-variable RF is used for single-lepton

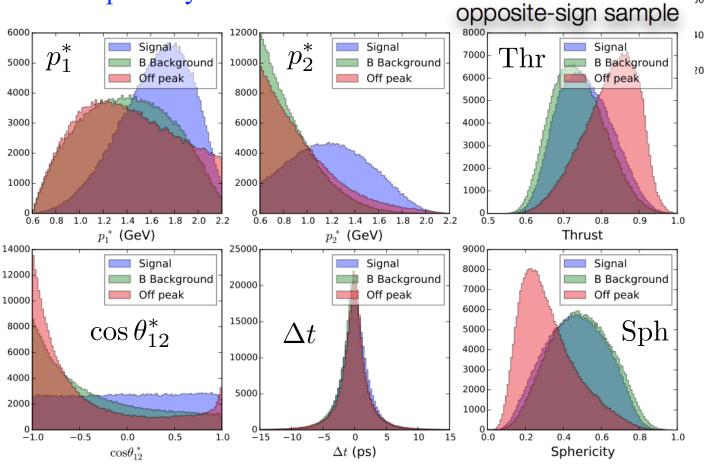
• Train on same-sign and opposite-sign samples

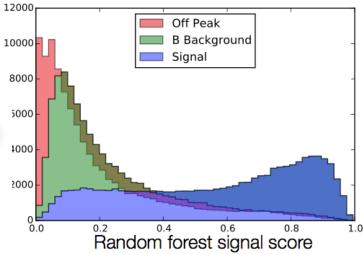
separately:

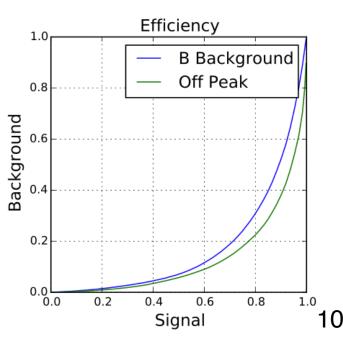






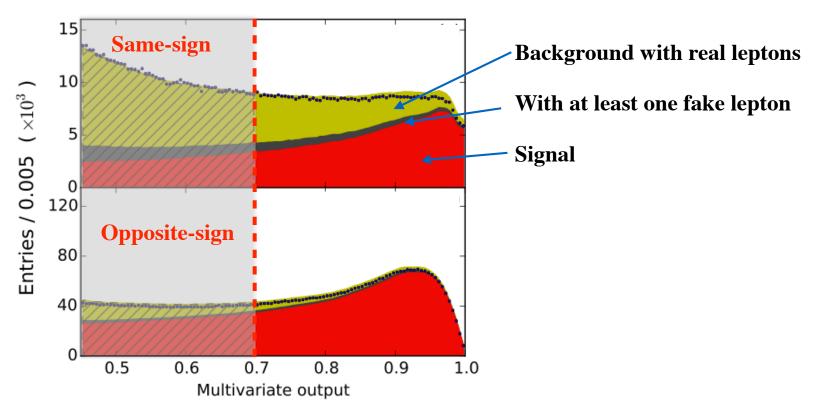

## Multivariate Background Suppression II


• Continuum and *B* backgrounds are suppressed using a random forest (RF) discriminator


• A separate, 8-variable RF is used for single-lepton

• Train on same-sign and opposite-sign samples

separately:





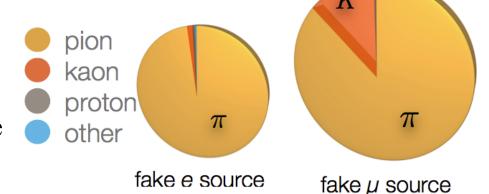



#### **Final Selection**

RF Signal Probability Distribution



- Require multivariate (RF) output > 0.7
- After RF cuts, select 517 k same-sign events / 3196 k opposite-sign events from on-peak dilepton sample (and 85M single-electrons)
- 2.5% continuum background
- 35% (8%)  $B\overline{B}$  background in same-sign (opposite-sign) sample





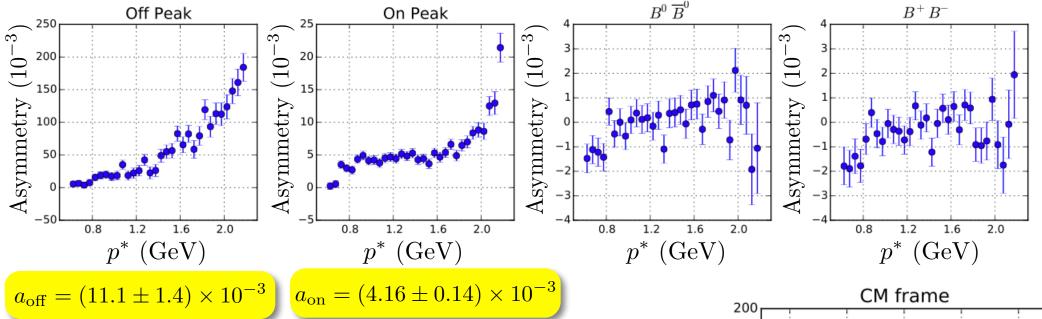

### Fake Lepton Contributions

• Approx 0.1% of selected electrons and 3% of muons in dilepton samples are misidentified hadrons

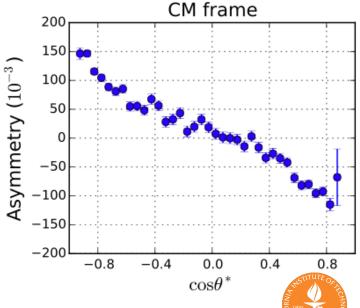
- 98% of misidentified electrons come from pions
- 87% of misidentified muons come from pions and 12% from kaons



- To correct for differences in the muon misidentification rate between data and MC, we study clean kaon and pion samples from  $D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$
- For the electron misidentification rate correction, we use a larger pion control sample from  $K_S^0 \to \pi^+\pi^-$
- The ratios of the misidentification efficiencies between data and MC samples are used to scale the misidentified lepton components in MC  $w_{\mu}^{\text{fa}}$


$$w_{\ell^{\pm}}^{\mathrm{fake}} = \sum_{h=K,\pi,p} f_{h\to\ell^{\pm}} \frac{\epsilon_{h\to\ell^{\pm}}^{\mathrm{data}}}{\epsilon_{h\to\ell^{\pm}}^{\mathrm{MC}}},$$




$$w_{\mu^+}^{
m fake} = 0.792 \pm 0.012 \qquad w_{e^+}^{
m fake} = 1.00 \pm 0.10 \ w_{\mu^-}^{
m fake} = 0.797 \pm 0.013 \qquad w_{e^-}^{
m fake} = 0.56 \pm 0.10$$

## Single Electron Asymmetry

Raw single-electron asymmetries:



 Larger off-peak asymmetry due to radiative Bhabha background and larger detector acceptance in backward (positron-beam) direction





13

### Single Electron Constraint

- First, remove events probabilistically so that the single-electron momentum distribution matches the dilepton momentum distribution
- Then recalculate asymmetries and other values needed as inputs for single-electron constraint:
  - Data asymmetry:  $a_{\rm on} = (4.16 \pm 0.14) \times 10^{-3}$ ;  $a_{\rm cont} = (11.1 \pm 1.4) \times 10^{-3}$ .
  - Continuum fraction:  $f_{\rm cont}=(10.315\pm0.016)\%$ .
  - $B^0 \overline{B}{}^0$  fraction in  $B \overline{B}$  component:  $f_{B^0} = (48.5 \pm 0.6)\%$ .
  - Cascade fractions:  $f_{B^0}^{\mathrm{casc}} = (19.778 \pm 0.006)\%$ ;  $f_{B^\pm}^{\mathrm{casc}} = (15.347 \pm 0.006)\%$ .
  - Fake electron in  $B\overline{B}$  component:  $f_B^{\rm fake} = (1.913 \pm 0.005) \times 10^{-3}$  ,
  - Fake electron asymmetry:  $a_B^{\rm fake} = 35\%$ .
  - Direct-/cascade-electron asymmetry difference:  $\delta_e^{\rm casc} \equiv a_e^{\rm casc} a_e^{\rm dir} = (-1.16 \pm 0.25) \times 10^{-3}$ .
  - Cascade lepton mistag:  $w^{\rm casc}=(73.77\pm0.10)\%$ .
- Based on these inputs to  $a_{\rm on} \alpha = \beta \chi_d A_{CP} + \gamma a_e$ , we have:

$$a_{\rm on} - \alpha = (2.60 \pm 0.20) \times 10^{-3}$$
  
 $\beta \chi_d = 0.0573 \pm 0.0011$   
 $\gamma = 0.89513 \pm 0.00016$ 





| Source                                                 | $(10^{-3})$ |
|--------------------------------------------------------|-------------|
|                                                        | (10 )       |
| Generic MC bias correction                             | 1.04        |
| MC branching fractions                                 | 0.43        |
| Misidentified lepton corrections in dilepton events    | 0.77        |
| Misidentified $e$ correction in single electron events | 0.65        |
| Neutral/charged $B$ difference                         | 0.74        |
| Direct-/cascade $e$ asymmetry difference               | 0.44        |
| Direct-/cascade $\mu$ asymmetry difference             | 0.34        |
| Background-to-signal ratios                            | 0.68        |
| Random forest cut efficiency                           | 0.08        |
| Total                                                  | 1.90        |





| Source                                                             | $(10^{-3})$           |
|--------------------------------------------------------------------|-----------------------|
| Generic MC bias correction                                         | 1.04                  |
| MC branking fractions                                              | 0.43                  |
| Misidentification corrections in dilepton events                   | 0.77                  |
| Misidentified oction in single electron events                     | 0.65                  |
| Neutral/charg                                                      |                       |
| Direct-/cascade Fitting to generic MC generated                    | with $A_{CP} = 0$     |
| Direct-/cascade Direct-/cascade yields $A_{CP} = (-1.00 \pm 1.04)$ | $\times 10^{-3}$ . We |
| Background-to- apply a correction based on this a                  | and treat the         |
| Random forest statistical uncertainty on the MC                    |                       |
| Total                                                              | Tit us u              |
| systematic uncertainty.                                            |                       |
|                                                                    |                       |





| Source                                                                        |                                                                                                                                                                                                                   | $(10^{-3})$                                     |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Generic MC bia                                                                | s correction                                                                                                                                                                                                      | 1.04                                            |
| MC branching f                                                                | fractions                                                                                                                                                                                                         | 0.43                                            |
| Misidenti ed lej                                                              | pton corrections in dilepton events                                                                                                                                                                               | 0.77                                            |
| Misidentifi                                                                   | correction in single electron events                                                                                                                                                                              | 0.65                                            |
| Neutral/chal                                                                  | difference                                                                                                                                                                                                        | 0.74                                            |
| Direct-/cascad<br>Direct-/cascade<br>Background-to-<br>Random forest<br>Total | We correct the MC samples so the branching fractions in the B decay consistent with the world average corrections are between 0.57 and estimate the systematic uncertaint the corrections over their uncertaints. | ay chain are ge. Most d 1.32. We nty by varying |





| Source                                               | $(10^{-3})$                                                |  |  |
|------------------------------------------------------|------------------------------------------------------------|--|--|
| Generic MC bias correction                           | 1.04                                                       |  |  |
| MC branching fractions                               | 0.43                                                       |  |  |
| Misidentified lepton corrections in dilepton events  | 0.77                                                       |  |  |
| Misidentified e correction in single electron events | 0.65                                                       |  |  |
| Neutral $\wedge$ arged $B$ difference                | 0.74                                                       |  |  |
| Direct-/cas $e$ asymmetry difference                 | 0.44                                                       |  |  |
| Direct-/casc                                         | 0.34                                                       |  |  |
| Background-to                                        |                                                            |  |  |
| Random forest                                        |                                                            |  |  |
| Total The misidentified lepton systematics are       |                                                            |  |  |
| estimated by varying the uncerta                     | estimated by varying the uncertainties of the              |  |  |
|                                                      | corrections to $e^+, e^-, \mu^+$ and $\mu^-$ individually. |  |  |





#### • Summary of systematic uncertainties on $A_{CP}$ :

| Source                                               | $(10^{-3})$ |
|------------------------------------------------------|-------------|
| Generic MC bias correction                           | 1.04        |
| MC branching fractions                               | 0.43        |
| Misidentified lepton corrections in dilepton events  | 0.77        |
| Misidentified e correction in single electron events | 0.65        |
| Neutral/charged $B$ difference                       | 0.74        |
| Direct-/c cade $e$ asymmetry difference              | 0.44        |
| Direct-/cas $\mu$ asymmetry difference               | 0.34        |
| Background-                                          | 0.68        |

Random forest Total

In the single-electron MC sample, the electron charge asymmetry is slightly different for neutral B events vs. charged B events. These cannot be separated in data so we use the average asymmetry in the fit and apply a systematic uncertainty based on the change in  $A_{CP}$  after shifting the asymmetry in the signal component of the single-electron sample by half the charge asymmetry difference.





#### • Summary of systematic uncertainties on $A_{CP}$ :

| Source                                                 | $(10^{-3})$ |
|--------------------------------------------------------|-------------|
| Generic MC bias correction                             | 1.04        |
| MC branching fractions                                 | 0.43        |
| Misidentified lepton corrections in dilepton events    | 0.77        |
| Misidentified $e$ correction in single electron events | 0.65        |
| Neutral/charged $B$ difference                         | 0.74        |
| Direct-/cascade e asymmetry difference                 | 0.44        |
| Direct-/cascade $\mu$ asymmetry difference             | 0.34        |
| Background-to-signal ratios                            | 0.68        |
| Random t t cut efficiency                              | 0.08        |
| Total                                                  | 1.90        |

In the single-electron MC sample, we find a small difference in charge asymmetry between direct and cascade leptons. We shift the cascade lepton asymmetry to be the same as the direct lepton asymmetry and use the change in  $A_{CP}$  as a systematic uncertainty.





#### • Summary of systematic uncertainties on $A_{CP}$ :

| Source                                                 | $(10^{-3})$ |
|--------------------------------------------------------|-------------|
| Generic MC bias correction                             | 1.04        |
| MC branching fractions                                 | 0.43        |
| Misidentified lepton corrections in dilepton events    | 0.77        |
| Misidentified $e$ correction in single electron events | 0.65        |
| Neutral/charged $B$ difference                         | 0.74        |
| Direct-/cascade $e$ asymmetry difference               | 0.44        |
| Direct-/cascade µ asymmetry difference                 | 0.34        |
| Background-to-signal ratios                            | 0.68        |
| Random rest cut efficiency                             | 0.08        |
| Total                                                  | 1.90        |

The background-to-signal ratios  $R_{\ell_1\ell_2}^{\pm\pm}$  and  $R_{\ell_1\ell_2}^{\pm\mp}$  (for  $A_{CP}=0$ ) are calculated from MC. We calculate a systematic for the ratios by varying them individually and taking the quadratic sum of the variation in  $A_{CP}$ .





#### • Summary of systematic uncertainties on $A_{CP}$ :

| Source                                                 | $(10^{-3})$ |
|--------------------------------------------------------|-------------|
| Generic MC bias correction                             | 1.04        |
| MC branching fractions                                 | 0.43        |
| Misidentified lepton corrections in dilepton events    | 0.77        |
| Misidentified $e$ correction in single electron events | 0.65        |
| Neutral/charged $B$ difference                         | 0.74        |
| Direct-/cascade $e$ asymmetry difference               | 0.44        |
| Direct-/cascade $\mu$ asymmetry difference             | 0.34        |
| Background-to-signal ratios                            | 0.68        |
| Random forest cut efficiency                           | 0.08        |
| Total                                                  | 1.90        |

To take into account differences in the RF distribution between data and MC (the selection efficiency for  $B\overline{B}$  dilepton events in MC is ~2% larger than for data), we shift the RF selection for the MC sample while keeping it the same for data until the selected MC events are reduced by up to 6%. We take the average change in  $A_{CP}$  as our systematic uncertainty.





#### Fit Results

• Final fit results (statistical errors only):

| $A_{CP} = (-3.9 \pm 3.5) \times 10^{-3}$ |                     |                      |                      |  |
|------------------------------------------|---------------------|----------------------|----------------------|--|
| $N_{ee}^0$                               | $N_{e\mu}^0$        | $N_{\mu e}^0$        | $N^0_{\mu\mu}$       |  |
| $430875\pm515$                           | $365343 \pm 429$    | $458200\pm480$       | $268077 \pm 391$     |  |
| $\chi_d^{ee}$                            | $\chi_d^{e\mu}$     | $\chi_d^{\mu e}$     | $\chi_d^{\mu\mu}$    |  |
| $0.2248 \pm 0.0006$                      | $0.1769 \pm 0.0006$ | $0.1754 \pm 0.0005$  | $0.2032 \pm 0.0007$  |  |
| $a_{e1}$                                 | $a_{e2}$            | $a_{\mu 1}$          | $a_{\mu 2}$          |  |
| $0.0034 \pm 0.0006$                      | $0.0030 \pm 0.0006$ | $-0.0056 \pm 0.0011$ | $-0.0065 \pm 0.0011$ |  |

$$\begin{split} M_{\ell_1\ell_2}^{\pm\pm} &= \frac{1}{2} N_{\ell_1\ell_2}^0 (1 + R_{\ell_1\ell_2}^{\pm\pm}) \Big[ 1 \pm a_{\ell_1} \pm a_{\ell_2} \pm \frac{1 + \delta_{\ell_1\ell_2} R_{\ell_1\ell_2}^{\pm\pm}}{1 + R_{\ell_1\ell_2}^{\pm\pm}} A_{CP} \Big] \chi_d^{\ell_1\ell_2}, \\ M_{\ell_1\ell_2}^{\pm\mp} &= \frac{1}{2} N_{\ell_1\ell_2}^0 (1 + R_{\ell_1\ell_2}^{\pm\mp}) (1 \pm a_{\ell_1} \mp a_{\ell_2}) (1 - \chi_d^{\ell_1\ell_2} + r_B), \end{split}$$

$$a_{\rm on} = \alpha + \beta \chi_d A_{CP} + \gamma a_\ell,$$





#### Fit Results

• Final fit results (statistical errors only):

| $A_{CP} = (-3.9 \pm 3.5) \times 10^{-3}$ |                     |                      |                      |  |
|------------------------------------------|---------------------|----------------------|----------------------|--|
| $N_{ee}^0$                               | $N_{e\mu}^0$        | $N_{\mu e}^0$        | $N^0_{\mu\mu}$       |  |
| $430875\pm515$                           | $365343 \pm 429$    | $458200\pm480$       | $268077 \pm 391$     |  |
| $\chi_d^{ee}$                            | $\chi_d^{e\mu}$     | $\chi_d^{\mu e}$     | $\chi_d^{\mu\mu}$    |  |
| $0.2248 \pm 0.0006$                      | $0.1769 \pm 0.0006$ | $0.1754 \pm 0.0005$  | $0.2032 \pm 0.0007$  |  |
| $a_{e1}$                                 | $a_{e2}$            | $a_{\mu 1}$          | $a_{\mu 2}$          |  |
| $0.0034 \pm 0.0006$                      | $0.0030 \pm 0.0006$ | $-0.0056 \pm 0.0011$ | $-0.0065 \pm 0.0011$ |  |

• CP Asymmetries divided by data-taking run and flavor combination:



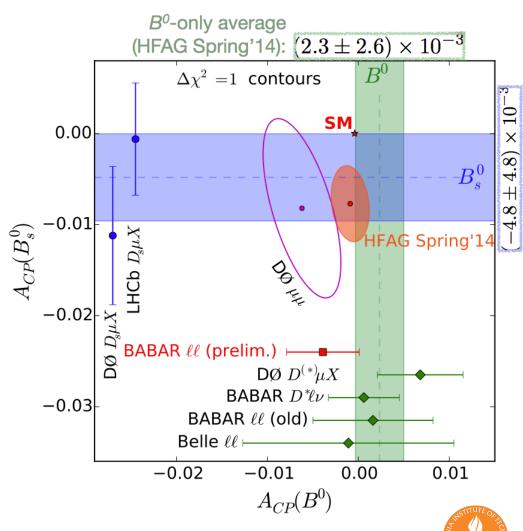




## Summary

• We measure the *CP* asymmetry:

$$A_{CP} = (-3.9 \pm 3.5 \pm 1.9) \times 10^{-3}$$


in  $B^0 - \overline{B}^0$  mixing using inclusive dilepton decays at BaBar

This result is consistent with the SM prediction and the world average

• It is also one of the most precise measurements to date

# Measurements of *CP* Asymmetry in Neutral *B* Mixing Before This Measurement

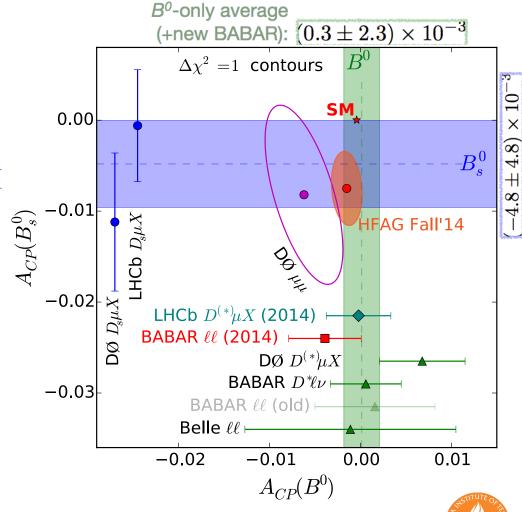
(See next slide for updated results)





## Summary

• We measure the *CP* asymmetry:


$$A_{CP} = (-3.9 \pm 3.5 \pm 1.9) \times 10^{-3}$$

in  $B^0 - \overline{B}^0$  mixing using inclusive dilepton decays at BaBar

This result is consistent with the SM prediction and the world average

• It is also one of the most precise measurements to date

# Measurements of *CP* Asymmetry in Neutral *B* Mixing Including This Measurement





# Backup Slides





## **Event Yields**

• Continuum-subtracted number of events:

|                 | $\ell^+\ell^+$ | $\ell^+\ell^-$   | $\ell^-\ell^+$ | $\ell^-\ell^-$ |
|-----------------|----------------|------------------|----------------|----------------|
| $\overline{ee}$ | $82303\pm320$  | $426296\pm783$   | $425309\pm782$ | $81586\pm323$  |
| $e\mu$          | $55277\pm263$  | $384552\pm684$   | $378261\pm660$ | $55878\pm264$  |
| $\mu e$         | $67399\pm290$  | $467591\pm737$   | $475363\pm744$ | $67152\pm290$  |
| $\mu\mu$        | $47384\pm243$  | $277936 \pm 619$ | $278691\pm618$ | $48145\pm247$  |

