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Outline

» Time projection chamber principles
» Details of LUX
» Original, published Run 3 analysis

 Run 3 re-analysis

- Updated algorithms
- Event Acceptance
— Calibrations
- Energy Reconstruction
- (Not quite) new data
* Concluding remarks
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Time Projection Chambers

 LUX Is a dual-phase time
projection chamber (TPC)

 Particle collision —
ight (S1) + charge

 Charge Is extracted - sﬂ ﬁEdl ‘
electroluminescence (S2) =y Drift time

Particle | == £ " indicates depth

« 3D position reconstruction.— ;

- The S2 i1s localized In X-Y

- Time difference between
. — ionization electrons
Sl and 82 glves depth N UV sc::ntillaticntphctons(-—1?5 nm)

S2

~S1

Image by CH Faham
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Control of Backgrounds

* Reduce number of background events

- Xe self-shielding + position — Fiducialization
* Many events stopped outside/tagged within fiducial volume
- Low radioactivity compoenents

» Discriminate between signal and background
events

- S2/S1 ratio — low for WIMPSs, high for electronic
recolls (primary background)

- Using Profile Likelihood Ratio (PLR) to discriminate
using multiple observables
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LUX

» Located 4850 (4300 m w.e.)
feet below ground in Sanford
Underground Research
Faclility (SURF), Lead, South
Dakota

» 370 kg of liquid Xenon

- 250 kg actively monitored

- Vessel is placed ina 7.6 m
diameter water tank

* Equipped with 122 Photo-
multiplier Tubes (PMTSs) In
two arrays, top and bottom
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Original Run 3 Analysis

« 85.3 live days

« 118 kg fiducial volume

« S2 threshold of 200
photoelectrons (phe)

e S1 between 2 and 30 phe

« 160 events observed prior to
discrimination with PLR

—_
O‘
IS
N
T

* NR response conservatively
assumed to be 0 below 3 keV

WIMP-nucleon cross section (sz)

* Obtained best limit of /
7.6 X 104 cmz2 @ 33 GeV L
Y m10 GeV/c?) 10
LUX Limit + 1o wivep
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Run 3 Re-analysis
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Updated Algorithms

» Accounted for VUV Xe photon energy (see next slide)

« S1 obtained from individual photon counting
(“spike count”) + pulse area

» S2 based on both PMT arrays

Removed systematic biases and noise In pulse area
measurements

* Improved background model
* Fine tuned pulse-finding algorithms

* Improved XY position reconstruction
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More On VUV Photons

Distribution of pulse

Single Photo-electron :
i Ig Phbtosieviion Salitador areas of single photons =
| —— PMT 121] ‘: v
4t i (liq
S 4l i Used in re-analysis
£ = 1072
3 2 <
LUX
£ 4l = / Preliminary
0 7\l SN . St L Used in
o 10 20 30 40 50 60 original Run 3
samples (10ns) ar,‘alys,ls , , . . .
0 10 20 30 40 50 60 70 80 90
« Photon — PMT photocathode — single electron Pulse area [mV ns|
Except...

- Xe scintillation: 175 nm (7.1 eV). Callibration LEDs: 470 nm (2.6 eV)
Two photo-electrons about 20% of the time in Xe

- phe (photoelectrons) — phd (detected photons)
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Event Acceptance

Penetration of Wall Events

« 05 live days Into Fiducial Volume
. . 2 JE: 600 < S2 < 1000
* Larger fiducial mass (145 R ‘
” 10° LUX
kQ) C}hlanks to the wall gir| s csscos /ﬁfd_, Pre“mmary
mode "
2 02 38_0 <82 Z :180 —
e S2 threshold of 165 phd Bl —— ,,Am""’
W 2 123 300 < S2 < 380 p2=s,
* Two-photon Sl1s accepted gé&:| ~“* =7 |
regardless of area é | z0esa<ang
« 591 Events observed 0 oo iea o =
3 10 o=1.680 cm .
between S1 of 1 and 50 S
phd prior to the PLR l*‘“fééiiﬁrﬂ,, >
2 ™ 100<sz 150 ,Lf;
§1o; o=2.041cm . |
08/07/2015 APS-DPF, An 14 n w2 2 26

corrected radius / cm Rad | u S



ER and NR Calibration

High stats tritium calibration
(165,863 events)

Deuterium-deuterium (DD)
calibration of nuclear recoll
light and charge yield

— Nuclear recoil assumed to be
zero below 1.2 keV

Calibration tunes model
Inputs, signal and
background (NEST)

PLR tests these models

- More powerful than cut-and-
count

08/07/2015

LUX a) ER Calibration

Preliminary ER Mean and
‘ +40% Band

.\ NR Mean

.........................

.........................

b) NR Calibration

E;Mean

\ NR Mean|and
. +40% Band

Te 20 30 40 50

S1 detected photons

Photon counting creates bands!

Their width comes from corrections
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Energy Reconstruction

* “Doke plot”: anti-correlation

: Run03 WS Doke Plot
of light and charge 65F a3 ddkey . 10
— The relationship is consistent 91=01167 37-0.003 S60
. =12.05 +/- 0.
over a wide range of source 6.0{ :
energies 1450
. .3 |
- Indicates good understanding &°° 163keV 00
T o
of the detector 5 410kev 1320 8
_ _ w s ol 237keV crey (5
* Fit provides: & 240
_ - - i LUX
gl (light collection efficiency) 45| Breliminary | W60
- g2 (charge extraction 609keV 80
efficiency x single electron a0 | . 662keVT
area) 250 300 350 400 450

S2/E [phd/keV]

- Both are inputs to PLR
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18 cm 20 cm

Detector ..o S er e mnnn s s emtnnm gate grid 1_
Center i et Rt / T
e ety a8 agAt : ! ;
DeAr TSRS 2 LUX
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'é' ._o. ;- .'. o. i ;
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WIMP Search
Data After

2EENEWAIRS
_Teflon Wall

* The distribution of
WIMP events in radius?
and drift time and in S1-
log(s2/s1) space

 While the ER and [\ 5.0 keV, LUX B .Fl<l18'cm' N
NR bands are not . : ‘ix Preliminary 18<R<20cm |7
used in our analysis, _ AR .
It appears that no % 2F \ 'ﬁ%ﬁ*#hg@%
obvious WIMP B B e T TR e e e e T
population is present 8 S - NN ]

PLR-based analysis 'F e E
ongoing! P PR A iSO S
0'50 10 20 30 40 50

08/07/2015 S1 [detected photons]



Conclusions

* The reanalysis of LUX run 3 data improves on the
already premier results from 2013

- The reanalysis implements multiple improvements in all
levels, from basic waveform processing to high level
calibrations

* New limits (or detection) is coming up in a few
weeks

* Run 4 (with approximately 300 live days) is ongoing
- We already have more data there than Run 3!
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Backup
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Profile Likelihood Ratio

 PLR compares data observables to modeled signal and
background distributions

- Is the event consistent with signal distribution (at a given mass
and cross section)?

- Is the event consistent with the background distribution?

 LUX PLR is implemented in Root with RooFit and
RooStats

- Function of S1, S2, event radius and depth

- Multiple background and signal parameters are allowed to vary
within their uncertainties

- If the likelihood of WIMP signal model cross section relative to
global maximum likelihood is low (< 0.1), the model is rejected

08/07/2015 APS-DPF, Ann Arbor 17
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