

The LUX Dark Matter Experiment And an Updated Analysis of Its First Results

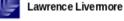
Tomasz Biesiadzinski
SLAC National Accelerator Laboratory
for the LUX Collaboration

The LUX Collaboration

London

Brown

Richard Gaitskel	PI, Professor
Simon Fiorucci	Research Associate
Samuel Chung C	han Graduate Student
Dongqing Huang	Graduate Student
Casey Rhyne	Graduate Student
Will Taylor	Graduate Student
James Verbus	Graduate Student
Imperial College	Imperial College Landon


Imperial College London

PI Professor

Henrique Araujo	PI, Reader
Tim Sumner	Professor
Alastair Currie	Postdoc
Adam Bailey	Graduate Student
Khadeeja Yazdani	Graduate Student
A.	

Lawrence Berkeley + UC Berkeley

DOD JACODSEII	11, 110163301
Murdock Gilchriese	Senior Scientist
Kevin Lesko	Senior Scientist
Peter Sorensen	Scientist
Victor Gehman	Scientist
Attila Dobi	Postdoc
Daniel Hogan	Graduate Student
Mia Ihm	Graduate Student
Kate Kamdin	Graduate Student
Kelsey Oliver-Mallory	Graduate Student

Adam	Bernstein	PI, Leader of Adv. Detector Grp.
Kareer	n Kazkaz	Staff Physicist
	.enardo	Graduate Student
	LIP Coimbra	

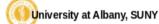
Isabel Lopes PI, Professor Jose Pinto da Cunha Assistant Professor Vladimir Solovov Senior Researcher Francisco Neves Auxiliary Researcher Alexander Lindote Claudio Silva Postdoc

SLAC Nation Accelerator Laboratory

NI OS	
Dan Akerib	PI, Professor
Thomas Shutt	PI, Professor
Kim Palladino	Project Scientist
Tomasz Biesiadzinski	Research Associate
Christina Ignarra	Research Associate
Wing To	Research Associate
Rosie Bramante	Graduate Student
Wei Ji	Graduate Student
T.I. Whitis	Graduate Student

SD School of Mines

Professor
aduate Student



David Taylor	Project Engineer
Mark Hanhardt	Support Scientist

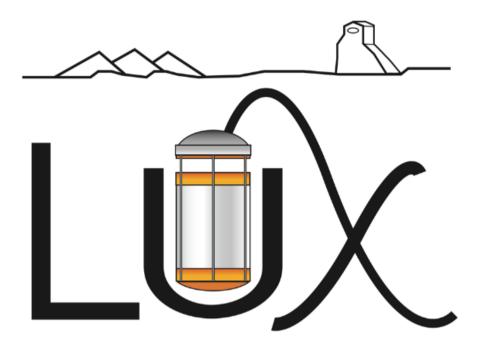
Texas A&M

James White †	PI, Professor
Robert Webb	PI, Professor
Rachel Mannino	Graduate Student
Paul Terman	Graduate Student

Matthew Szydagis	PI, Professor
Jeremy Mock	Postdoc
Steven Young	Graduate Student

UC Davis

Mani Tripathi	PI, Professor
Britt Hollbrook	Senior Engineer
John Thmpson	Development Engine
Dave Herner	Senior Machinist
Ray Gerhard	Electronics Engineer
Aaron Manalaysay	Postdoc
Scott Stephenson	Postdoc
Jacob Cutter	Graduate Student
James Morad	Graduate Student
Sergey Uvarov	Graduate Student



PI, Professor
Professor
Engineer
Engineer
Postdoc
Graduate Student
Graduate Student
Graduate Student

University College London

Chamkaur Ghag	PI, Lecturer
Sally Shaw	Graduate Student

University of Edinburgh

Alex Murphy	PI, Reader
Paolo Beltrame	Research Fellow
James Dobson	Postdoc
Tom Davison	Graduate Student
Maria Francesca Marzioni	Graduate Student

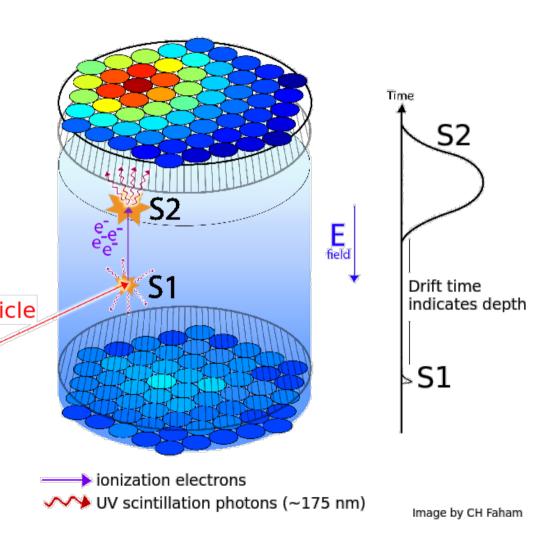
Carter Hall	PI, Professor
Jon Balajthy	Graduate Student
Richard Knoche	Graduate Student

University of Rochester

Frank Wolfs	PI, Professor
Wojtek Skutski	Senior Scientist
Eryk Druszkiewicz	Graduate Student
Dev Ashish Khaitan	Graduate Student
Mongkol Moongweluwan	Graduate Student

University of South Dakota

the Weiserry of transferred to a	
Dongming Mei	PI, Professor
Chao Zhang	Postdoc
Angela Chiller	Graduate Student
Chris Chiller	Graduate Student


Daniel McKinsey	PI, Professor
Ethan Bernard	Research Scientist
Markus Horn	Research Scientist
Blair Edwards	Postdoc
Scott Hertel	Postdoc
Kevin O'Sullivan	Postdoc
Elizabeth Boulton	Graduate Student
Nicole Larsen	Graduate Student
Evan Pease	Graduate Student
Brian Tennyson	Graduate Student
Lucie Tvrznikova	Graduate Student

Outline

- Time projection chamber principles
- Details of LUX
- Original, published Run 3 analysis
- Run 3 re-analysis
 - Updated algorithms
 - Event Acceptance
 - Calibrations
 - Energy Reconstruction
 - (Not quite) new data
- Concluding remarks

Time Projection Chambers

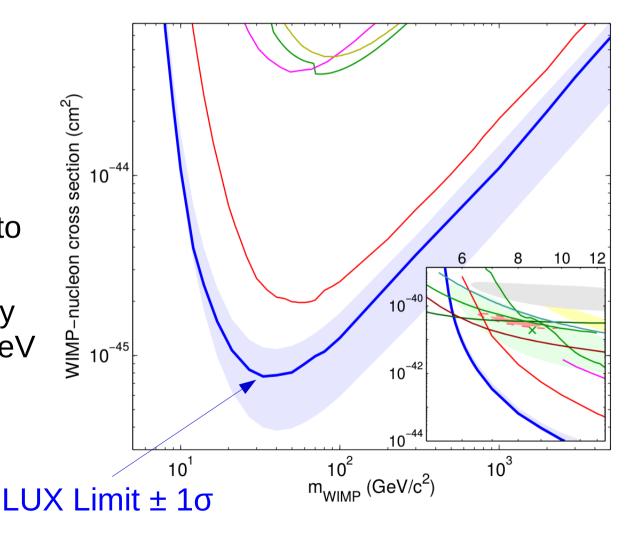
- LUX is a dual-phase time projection chamber (TPC)
- Particle collision → light (S1) + charge
- Charge is extracted → electroluminescence (S2)
- 3D position reconstruction
 - The S2 is localized in X-Y
 - Time difference between
 S1 and S2 gives depth

Control of Backgrounds

- Reduce number of background events
 - Xe self-shielding + position → Fiducialization
 - Many events stopped outside/tagged within fiducial volume
 - Low radioactivity components
- Discriminate between signal and background events
 - S2/S1 ratio → low for WIMPs, high for electronic recoils (primary background)
 - Using Profile Likelihood Ratio (PLR) to discriminate using multiple observables

LUX

- Located 4850 (4300 m w.e.) feet below ground in Sanford Underground Research Facility (SURF), Lead, South Dakota
- 370 kg of liquid Xenon
 - 250 kg actively monitored
 - Vessel is placed in a 7.6 m diameter water tank
- Equipped with 122 Photomultiplier Tubes (PMTs) in two arrays, top and bottom

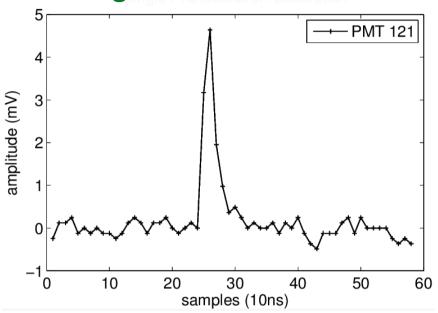


08/07/2015

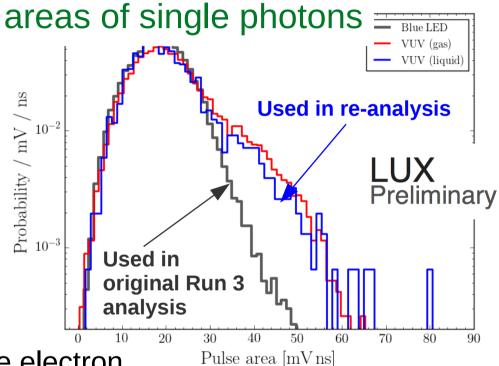
APS-DPF, Ann Arbo

Original Run 3 Analysis

- 85.3 live days
- 118 kg fiducial volume
- S2 threshold of 200 photoelectrons (phe)
- S1 between 2 and 30 phe
- 160 events observed prior to discrimination with PLR
- NR response conservatively assumed to be 0 below 3 keV
- Obtained best limit of
 7.6 × 10⁻⁴⁶ cm² @ 33 GeV

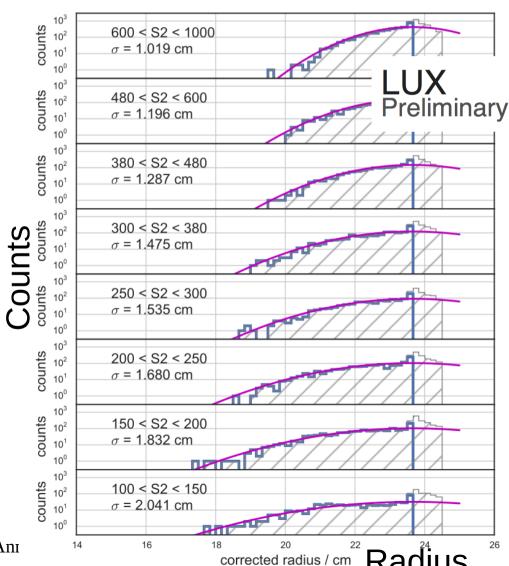

Run 3 Re-analysis

Updated Algorithms


- Accounted for VUV Xe photon energy (see next slide)
- S1 obtained from individual photon counting ("spike count") + pulse area
- S2 based on both PMT arrays
- Removed systematic biases and noise in pulse area measurements
- Improved background model
- Fine tuned pulse-finding algorithms
- Improved XY position reconstruction

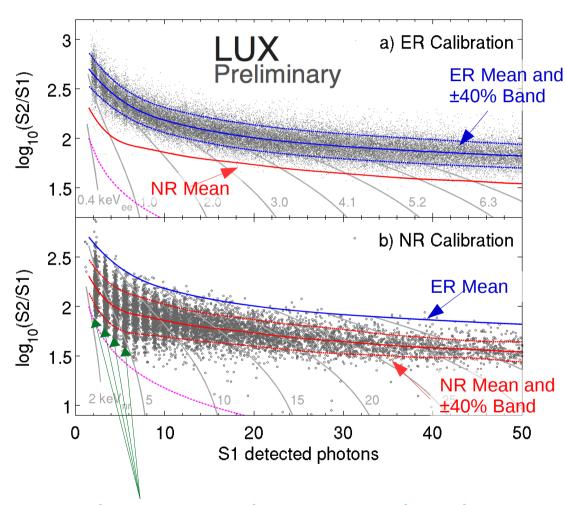
More On VUV Photons

Distribution of pulse areas of single photons



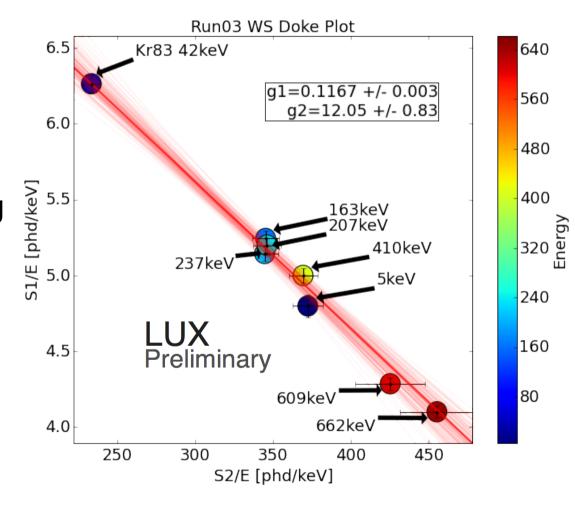
- Photon → PMT photocathode → single electron
 Except...
 - Xe scintillation: 175 nm (7.1 eV). Callibration LEDs: 470 nm (2.6 eV)
- Two photo-electrons about 20% of the time in Xe
 - phe (photoelectrons) → phd (detected photons)

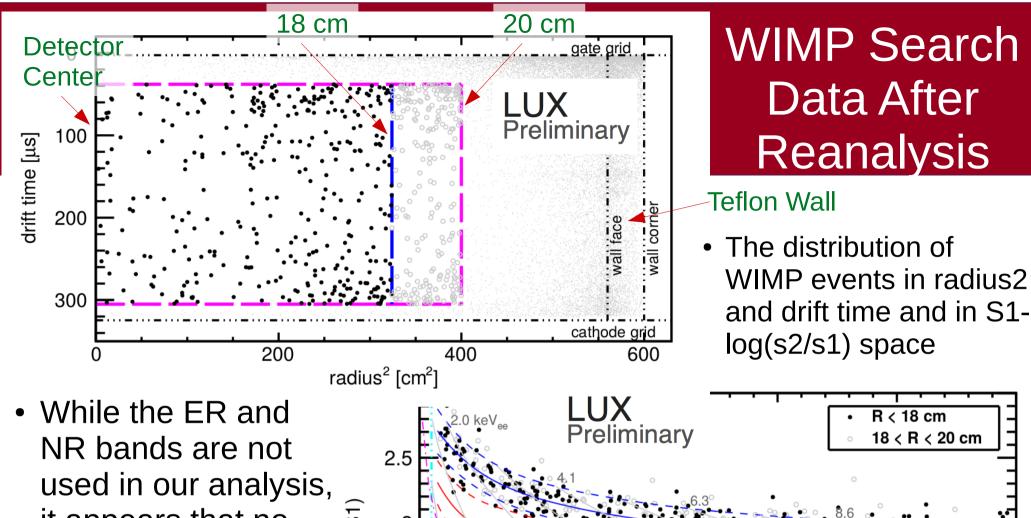
Event Acceptance

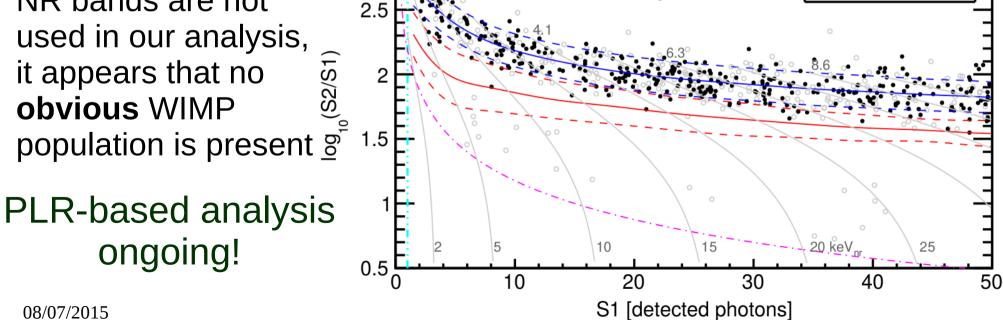

- 95 live days
- Larger fiducial mass (145 kg) thanks to the wall model
- S2 threshold of 165 phd
- Two-photon S1s accepted regardless of area
- 591 Events observed between S1 of 1 and 50 phd prior to the PLR

Penetration of Wall Events Into Fiducial Volume

ER and NR Calibration


- High stats tritium calibration (165,863 events)
- Deuterium-deuterium (DD) calibration of nuclear recoil light and charge yield
 - Nuclear recoil assumed to be zero below 1.2 keV
- Calibration tunes model inputs, signal and background (NEST)
- PLR tests these models
 - More powerful than cut-andcount




Photon counting creates bands! Their width comes from corrections APS-DPF, Ann Arbor

Energy Reconstruction

- "Doke plot": anti-correlation of light and charge
 - The relationship is consistent over a wide range of source energies
 - Indicates good understanding of the detector
- Fit provides:
 - g1 (light collection efficiency)
 - g2 (charge extraction efficiency × single electron area)
 - Both are inputs to PLR

Conclusions

- The reanalysis of LUX run 3 data improves on the already premier results from 2013
 - The reanalysis implements multiple improvements in all levels, from basic waveform processing to high level calibrations
- New limits (or detection) is coming up in a few weeks
- Run 4 (with approximately 300 live days) is ongoing
 - We already have more data there than Run 3!

Backup

Profile Likelihood Ratio

- PLR compares data observables to modeled signal and background distributions
 - Is the event consistent with signal distribution (at a given mass and cross section)?
 - Is the event consistent with the background distribution?
- LUX PLR is implemented in Root with RooFit and RooStats
 - Function of S1, S2, event radius and depth
 - Multiple background and signal parameters are allowed to vary within their uncertainties
 - If the likelihood of WIMP signal model cross section relative to global maximum likelihood is low (< 0.1), the model is rejected