

νPRISM: A novel technique for uncertainty reduction in neutrino oscillation experiments

vPRISM group – Michigan State University J. Calcutt, K. Mahn, G. Ponti, S. Wainwright DPF 2015

Motivation

- Current neutrino oscillation experiments depend on neutrino interaction models
 - Current T2K ν_{μ} errors: 7.7% (5.0%)

T2K Collaboration, PRD 91, 072010 (2015)

- Current T2K v_e errors: 6.8% (4.7%)
- Future experiments that look to determine δ_{CP} need higher precision (<3% uncertainties)
- vPRISM is a technique to reduce uncertainties from neutrino interaction models
 - Data-driven way to determine the relationship between true and reconstructed neutrino energies
- I will focus on how VPRISM can be applied to future experiments that propose to measure CP violation in neutrinos

CP violating phase and oscillation asymmetry WICHIGA

The probability for v_u to oscillate to v_e is given as

$$P_{\nu_{\mu} \to \nu_{e}} = \frac{1}{(A-1)^{2}} \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}[(A-1)\Delta]$$

$$(+)\frac{\alpha}{A(1-A)}\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{23}\sin2\theta_{13}\times$$

Changes sign depending on neutrino (antineutrino)

$$\sin \delta_{CP} \sin \Delta \sin A \Delta \sin [(1-A)\Delta]$$

$$+\frac{\alpha}{A(1-A)}\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{23}\sin2\theta_{13}\times$$

$$\cos \delta_{CP} \cos \Delta \sin A\Delta \sin[(1-A)\Delta]$$

$$+\frac{\alpha^2}{A^2}\cos^2\theta_{23}\sin^22\theta_{12}\sin^2A\Delta$$

• Future measurements compare neutrino and antineutrino probabilities to determine δ_{CP} , the CP violating phase

Neutrino vs antineutrino cross section

- Significant difference predicted between neutrino and antineutrino cross sections
 - Relevant for CP violation measurements

• Direct measurement of this difference independent of model is critical

Problem with energies

- Oscillation probability is dependent on true neutrino energy
- Data determined from final state particle kinematics
 - Outgoing 4-momentum measured by detector
 - Assuming single nucleon interaction (Genuine CCQE), then:

$$E_{\nu}^{QE} = \frac{2(M_n')E_{\mu} - ((M_n')^2 + m_{\mu}^2 - M_p^2)}{2 \cdot [(M_n') - E_{\mu} + \sqrt{E_{\mu}^2 - m_{\mu}^2} \cos \theta_{\mu}]}$$

 We now know that neutrinos can interact with multiple nucleons (2p-2h, multinucleon)

Picture by M. Martini

Neutrino interaction models

Multinucleon interactions cause a bias in the reconstructed neutrino energy

- Theoretical neutrino interaction models differ by a factor of 2-3
 - M. Martini, M. Ericson, G. Chanfray, and J. Marteau, PRC 80 065501 (2009)
 - J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, PRC 83 045501 (2011)

Effect on measurements

- Multinucleon processes cause a feed-down of events into the oscillation dip which affects the determination of oscillation parameters
 - All current experiments rely on the assumed neutrino-interaction model even with near detectors

- Consider T2K beamline as an example
 - Can be either a neutrino or antineutrino beam

E_v (GeV)

- 25 1.0° Off-axis Flux 1.0° Off-axis Flux 1.0° Off-axis Flux 1.5° Off-a
- 2.5° Off-axis Flux

 2.5° Off-axis Flux

 0
 0
 0.5
 1
 1.5
 2
 2.5° Off-axis Flux

 E_V (GeV)
- 4.0° Off-axis Flux

 20

 15

 0

 0

 0

 1.5

 2.5

 3 3.5

 E_v (GeV)

 Position in detector determines off-axis angle

angles

 Can make monoenergetic fluxes by taking linear combination of off-axis fluxes

$$\Phi(E_{\nu}) = \sum_{i=0}^{\theta_{max}} C_i \ \phi_i(E_{\nu})$$

vPRISM: Reproduction of SK flux

- Can reproduce the oscillated far detector flux at near detector
- Allows for neutrino oscillation measurements without neutrino interaction models

Removing potential bias and systematic

uncertainties

The same construction can be done for v_e and antineutrino fluxes

Continuing research

Evaluate the benefits of a vPRISM detector for the T2HK experiment, δ_{CP} measurement

- Uses T2K beamline
- Using GLoBES software package

Summary

- Entering the era of precision measurements in neutrino oscillation experiments
- vPRISM is a data-driven way to remove uncertainties that arise from neutrino-nucleon interaction models
- Simulations continue to determine the effect on δ_{CP} measurements

8/6/2015

Backup Slides

8/6/2015

Neutrinos are produced from a proton beam at J-PARC, Tokai, Japan

- 1. Protons hit a target, producing pions and kaons, which decay into neutrinos
- 2. The beam is >99% ν_{μ} , small amount of ν_{e}
- 3. Switching the horn current produces predominant antineutrino beam (w/ ~10% neutrino)

Proposed detector

- At 1km, need 50m tall tank to span oaa range
- Water Cherenkov detector
 - Directly measure NC backgrounds
- Baseline design:
 - Inner Detector (ID): 6 or 8m diam, ^{10 m}
 10m tall
 - Outer Detector (OD): 10m diam,
 14m tall
- To improve incoming muons, OD surrounded by scintillator panels

Coefficients

- Take each oaa flux and scale according to SK oscillated flux for best χ^2 fit
- Includes a smoothness penalty

8/6/2015

νPRISM ν_e appearance

- 1. Measure SK ν_e response with $\nu PRISM \nu_{\mu}$
- 2. Measure vPRISM $\nu_{\rm e}$ response with vPRISM ν_{μ}
 - Need large mass ND to make a few percent measurement of $\sigma(v_u)/\sigma(v_e)$

vPRISM: Antineutrinos

- J-PARC can switch between v-mode and anti-v-mode by switching the beam focus
- Anti-v-mode analysis same as for neutrinos
 - Need to consider much larger v contamination
 - Standard vPRISM oscillation analyses can be applied to anti-neutrinos

