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Motivation

• Current neutrino oscillation experiments depend 
on neutrino interaction models
• Current T2K ν  μ errors: 7.7% (5.0%) 
• Current T2K νe errors: 6.8% (4.7%)

• Future experiments that look to determine δCP need 
higher precision (<3% uncertainties)

• νPRISM is a technique to reduce uncertainties 
from neutrino interaction models
• Data-driven way to determine the relationship between true 

and reconstructed neutrino energies
• I will focus on how νPRISM can be applied to 

future experiments that propose to measure CP 
violation in neutrinos
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T2K Collaboration, PRD 91, 072010 
(2015)



CP violating phase and oscillation asymmetry
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The probability for νμ to oscillate to νe is given as

• Future measurements compare neutrino and 
antineutrino probabilities to determine δCP, the CP 
violating phase

Changes sign 
depending on 
neutrino 
(antineutrino)



Neutrino vs antineutrino cross section

● Significant difference predicted between 
neutrino and antineutrino cross sections
– Relevant for CP violation measurements

● Direct measurement of this difference 
independent of model is critical
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Problem with energies

• Oscillation probability is dependent on true neutrino 
energy

• Data determined from final state particle kinematics
• Outgoing 4-momentum measured by detector
• Assuming single nucleon interaction (Genuine 

CCQE), then:
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● We now know that neutrinos can 
interact with multiple nucleons (2p-2h, 
multinucleon)



Neutrino interaction models

● Multinucleon interactions cause a bias in the 
reconstructed neutrino energy 

● Theoretical neutrino interaction models differ by a 
factor of 2-3

– M. Martini, M. Ericson, G. Chanfray, and J. Marteau, PRC 80 065501 (2009)
– J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, PRC 83 045501 (2011)
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Martini et al., PRD 87, 
013009 (2013) M. Hartz



Effect on measurements

• Multinucleon processes cause a feed-down of 
events into the oscillation dip which affects the 
determination of oscillation parameters
• All current experiments rely on the assumed 

neutrino-interaction model even with near detectors
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nuPRISM LOI. 
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νPRISM concept
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ν 
Beam

2.5°

nuPRISM LOI. arXiv:1412.3086.

● Consider T2K beamline as an example
● Can be either a neutrino or antineutrino beam



νPRISM concept
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nuPRISM LOI. arXiv:1412.3086.

● Different off-axis angles 
change the neutrino flux 
width and peak position



νPRISM concept
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nuPRISM LOI. arXiv:1412.3086.

● Imagine a detector that 
spans a range of off-axis 
angles
● Position in detector 

determines off-axis angle 



νPRISM: Monoenergetic flux
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● Can make monoenergetic fluxes by taking linear 
combination of off-axis fluxes

+* c
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νPRISM: Reproduction of SK flux

8/6/2015 12nuPRISM LOI. arXiv:1412.3086.

+1.0 -0.8 +0.5

Similarly, a 
combination of 
fluxes can be used 
to recreate the far 
detector flux



νPRISM: Advantages
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● Can reproduce the oscillated far detector flux at 
near detector

● Allows for neutrino oscillation measurements 
without neutrino interaction models
● Removing potential bias and systematic 

uncertainties



νPRISM: Additional fluxes
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ν
e
 flux reproduction

The same construction can be done for νe  and 
antineutrino fluxes



Continuing research

Evaluate the benefits of a PRISM detector for the ν
T2HK experiment, δCP measurement
● Uses T2K beamline
● Using GLoBES software package 

(www.mpi-hd.mpg.de/lin/globes/) 
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νPRISM ν
e
 flux (Input into GLoBES) 



Summary

• Entering the era of precision measurements in 
neutrino oscillation experiments

• PRISM is a data-driven way to remove ν
uncertainties that arise from neutrino-nucleon 
interaction models

• Simulations continue to determine the effect on 
δCP measurements
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Backup Slides

8/6/2015 17



Case study: T2K

Neutrinos are produced from a proton beam at    
J-PARC, Tokai, Japan

1. Protons hit a target, producing pions and 
kaons, which decay into neutrinos

2. The beam is >99% νμ, small amount of νe

3. Switching the horn current produces 
predominant antineutrino beam (w/ ~10% 
neutrino)
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Proposed detector

• At 1km, need 50m tall tank to span oaa 
range

• Water Cherenkov detector
– Directly measure NC backgrounds

• Baseline design:
– Inner Detector (ID): 6 or 8m diam, 

10m tall
– Outer Detector (OD): 10m diam, 

14m tall
• To improve incoming muons, OD 

surrounded by scintillator panels
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10 m

6 or 8 m

10 m

14 m



Coefficients

• Take each oaa flux and scale according to SK 
oscillated flux for best χ2 fit

• Includes a smoothness penalty
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Forced 
smoothness

Free fit



νPRISM νe appearance 

1. Measure SK νe response with PRISM ν νμ 
2. Measure PRISM ν νe response with PRISM ν νμ

– Need large mass ND to make a few percent 
measurement of (σ νμ)/ (σ νe)
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νPRISM: Antineutrinos

• J-PARC can switch between -mode and       ν
anti- -mode by switching the beam focusν

• Anti- -mode analysis same as for neutrinosν
– Need to consider much larger  ν

contamination
● Standard PRISM oscillation analyses can be ν

applied to anti-neutrinos
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