

Dan Pershey
DPF
Aug 7 2015

- The Numi Off-Axis v_e Appearance experiment (NOvA) is a two detector oscillation experiment
 - 14 mrad off-axis gives us a tightly peaked beam centered at 2 GeV
 - Fine-grained, low-Z detector provides good electromagnetic shower reconstruction
 - ND 1 km downstream of the target helps evaluate systematic uncertainties
- This talk describes how to use NOvA's ND data to build a datadriven extrapolation to predict our expected FD event counts

v_e Selection

- Two v_e CC PID's were developed: LID and LEM (see Jianming Bian's talk for more on our PID's)
 - Both PID's show good ND data and MC agreement
- Both PID's are very similar in signal efficiency and cosmic rejection
- ND Spectrum extrapolates to the beam background in our FD
 - Studying ND allows for a high stats prediction of our background
- Any excess over the predicted background is interpreted as v_e appearance

ND v_e Sample

- The ND neutrino energy distribution is modelled well
 - Shape agrees within uncertainty
- There is a small overall normalization discrepancy
 - Data sees 5% more events
- This discrepancy propagates through the extrapolation increasing the predicted background
 - We built a ND to cancel these types of uncertainties using a Far / Near extrapolation

Near Detector Background

- In the ND, all v_e CC-selected events are background events
- ND data gives a data-driven correction for the MC normalization
 - Scale up each component in MC by the data / MC ratio improves the background prediction
- \blacksquare This assumes that the simulation perfectly predicts the ratio of ND v_e CC : NC : v_μ CC interactions
 - We studied this assumption's impact on our analysis – details in following slides

Far Detector Background Prediction

 To extrapolate the background measured in the ND, we first calculate a far over near ratio in MC

$$FD_i^{Pred} = \frac{FD_i^{MC}}{ND_i^{MC}} ND_i^{Data}$$

- The NC and beam v_e CC components dominate the FD spectrum and are relatively flat in energy
- $\begin{tabular}{l} \blacksquare & The ν_{μ} CC component is much lower because of oscillations \\ \end{tabular}$
- After extrapolation, we predict:

	Beam Bkgd	v_{μ} CC	Beam v _e	NC	ν _τ CC
LID	0.88	0.05	0.46	0.35	0.02
LEM	0.94	0.06	0.46	0.40	0.02

Near Detector v_u Spectrum

- □ The signal for the v_e appearance analysis is v_e from $v_\mu \rightarrow v_e$ transitions
 - > The ND v_{μ} CC's allows us to predict our expected FD v_{e} CC signal
- $\hfill \square$ The v_μ CC selected sample is very pure
- The ND integrals of data and MC agree on the 1% level, so our extrapolation doesn't significantly affect the signal prediction

- $_{\text{u}}$ A discrepancy in hadronic energy has been observed in the ND v_{μ} CC sample (see Kirk Bays's talk for more)
 - The effect was tested as a systematic uncertainty for the v_e appearance analysis and was determined to have a negligible effect

Far Detector Signal Prediction

- For the signal, we construct a migration matrix
 - Maps the ND reconstructed energy spectrum to an estimate for true neutrino energy
- We then multiply by the far over near ratio as a function of true energy
 - These reweights depend on the particular oscillation parameters
- After reweighting, we unfold the migration matrix back into reconstructed energy
 - Providing a FD predicted signal spectrum
- We expect about 5 signal events for LID and LEM after extrapolating our ND data
 - Assuming the reactor constraint and no matter effects or CP violation

Extrapolation and Systematics

- A two detector experiment allows for the canceling or reduction of many systematic uncertainties such as beam flux and neutrino interaction modeling
 - The residual systematic uncertainties are evaluated by extrapolating our ND data with our nominal simulation and a systematically modified simulation

For the appearance measurement, we consider a number of systematic effects

- Calibration
- Birks-Chou modelling
- ND background composition
- Neutrino interaction models
- Overall normalization
- Beam uncertainties
- And more

Non-linearity in Detector Response

- The Birks-Chou Law gives an empirical description of non-linearity for scintillator detector response
- \Box We tuned effective Birks-Chou constants using a high stats ND v_{μ} CC QE sample
 - Obvious proton tracks from QE events allow studies based on high track dE/dx

$$LY = A \frac{\frac{dE}{dx}}{1 + k_B \frac{dE}{dx} + k_C \left(\frac{dE}{dx}\right)^2}$$

- The Data prefers effective constants:
 - $k_B = 0.04 \text{ g/MeV cm}^2$
 - $k_c = -0.0005 \text{ g/MeV}^2 \text{ cm}$
- These are higher than expected for this parameterization of pseudocumene
- We treat the difference between our numbers and typical values as a systematic

Absolute Calibration

- Our calibration is built on dE/dx from stopping cosmic muons
- Developed a two cross-check samples
- □ The $π^0$ mass peak is a great test for the $ν_e$ analysis tests EM calorimetry
 - Means are off by (1.5±2.1)%

Absolute Calibration

- Our calibration is built on dE/dx from stopping cosmic muons
- Developed a two cross-check samples
- The $π^0$ mass peak is a great test for the $ν_e$ analysis tests EM calorimetry
 - Means are off by (1.5±2.1)%

- Michel electrons high stats sample
 - In the FD, data is 1.9% high
 - In the ND, MC is 1.8% high
- Distributions of dE/dx are well modeled even at energies much lower than signal neutrinos
- We assign a 5% absolute calibration systematic cover these discrepancies

ND Background Composition Systematic

- The extrapolation assumes that our simulation perfectly models the ratio of ND v_e CC : NC : v_u CC interactions
- $_{\text{o}}$ It is possible to study the effect of changing these ratios on the background prediction by attributing the entire data / MC discrepancy to each of $v_{\rm e}$ CC, NC, and $v_{\rm u}$ CC separately
- This gives three background predictions
 - The maximum difference between our nominal background prediction and each of these is taken as a systematic uncertainty
- This gives a 3.9% (3.6%) systematic error on the background for LID (LEM)

Ratio to Nominal	v _e CC Excess	NC Excess	ν _μ CC Excess	
LID	1.008	1.009	0.961	
LEM	1.025	1.010	0.964	

ND Background Composition Check

- \mathbf{v}_{μ} CC's have a significant number of Michels because of the decay of the primary muon
- $\hfill\Box$ This provides a convenient handle for estimating the v_{μ} CC component in the ND

ND Background Composition Check

- \mathbf{v}_{μ} CC's have a significant number of Michels because of the decay of the primary muon
- $\hfill\Box$ This provides a convenient handle for estimating the v_{μ} CC component in the ND

- We see fewer Michels in data than MC implying a lower fraction of v_µ CC interactions
- Michel-corrected MC predicts3.1% more FD background
- Very close to the budgeted 3.9% indicating our composition systematic uncertainty is robust

Summary

- Developed a data-driven FD extrapolation using NOvA ND data to estimate the expected FD data and beam background for the first v_e appearance analysis
- Thoroughly checked the ND data and evaluated the largest contributing sources of systematic uncertainties on the FD signal and background predictions
- Using these methods, we expect
 - > 4.94 ± 0.64 signal events on a background of 0.94 ± 0.09 for LID
 - > 5.13 ± 0.56 signal events on a background of 1.00 ± 0.10 for LEM

	Signal	Total Bkgd	ν _μ CC	Beam v _e	NC	ν _τ CC	Cosmics
LID	4.94	0.94	0.05	0.46	0.35	0.02	0.06
LEM	5.13	1.00	0.06	0.46	0.40	0.02	0.06