Lattice QCD at the particle frontier

DPF2015, Ann Arbor, MI, Aug 5th, 2015

William Detmold, MIT

Lattice QCD at the particle frontier

I. Flavour physics

III. Future prospects: dark matter, neutrinos and ILC

[Many topics not covered]

DPF2015, Ann Arbor, MI, Aug 5th, 2015

William Detmold, MIT

Lattice QCD

- Provide accurate, predictive calculational capability at hadronic scales enabling tests of the SM and searches for physics beyond it
- Understand the emergence of hadrons, nuclei and extreme forms of matter (RHIC, n-stars)
 - Useful toolkit to study strongly interacting field theories beyond the SM

Quantum Chromodynamics

- Lattice QCD: tool to deal with quarks and gluons
 - Correlation functions as functional integral over quark and gluon d.o.f. on R₄ $\langle \mathcal{O} \rangle = \int dA_{\mu} dq d\bar{q} \mathcal{O}[q, \bar{q}, A] e^{-S_{QCD}[q, \bar{q}, A]_{i}}$ perform quark integrals exactly
 - Discretise and compactify system
 - Finite but large number of d.o.f (10¹⁰)
 - Numerically integrate via importance sampling (average over important configurations)
 - Undo the harm done in previous steps
 - Lattice QCD ⇒ QCD

LQCD status report

- Lattice QCD has advanced markedly in the last 5 years
 - Faster computers and better algorithms
 - New approaches to physics challenges
- State-of-the-art calculations address all systematics (discretisation, finite size, ...)
 - Sub percent accuracy on some quantities
 - Necessitates consideration of small effects: QED, isospin breaking (significant intellectual challenges to overcome)
- Scope increasing from meson physics to baryons and to light nuclei

Industrial LQCD

Different groups around the world using many technically different approaches to LQCD (c.f_a $^{200}_{R} \gtrsim t_{a}t_{g}$ -of the-art)

Flavour physics

See more in talk of Daping Du, Wed 14:00

FLAG = Flavour Lattice Averaging Group

- Flavour physics has been a mainstay of LQCD
- Many calculations of what are now "simple" quantities
- FLAG (PDG for LQCD)
 - Members from most of the major collaborations
 - Evaluates and grades different aspects of each calculation
 - Provides averages as the "LQCD community consensus" value for a given quantity
 - Summary report every couple of years
 1105.3453, 1304.5422
 - New version early 2016: expanded scope and coverage

FLAG example: decay constants

- Quark masses, decay constants, form factors, kaon mixing, LECs...
- Colour coded for quality of calculation (# lattice spacings, volumes,...)

 $N_{\mathbf{f}}$

MeV

• Long running tension between V_{ub} (and V_{cb}) extractions from inclusive $B \rightarrow X_u$ ($B \rightarrow X_c$) and exclusive decays $B \rightarrow \pi$ ($B \rightarrow D$)

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ub} \underbrace{\overline{u} \gamma^{\mu} (1 - \gamma_5) b}_{\equiv J^{\mu}} \overline{\ell} \gamma_{\mu} (1 - \gamma_5) \nu$$

Inclusive vs exclusive $V_{ub} \& V_{cb}$

• Long running tension between V_{ub} (and V_{cb}) extractions from inclusive $B \rightarrow X_u$ ($B \rightarrow X_c$) and exclusive decays $B \rightarrow \pi$ ($B \rightarrow D$)

• Long running tension between V_{ub} (and V_{cb}) extractions from inclusive $B \rightarrow X_u$ ($B \rightarrow X_c$) and exclusive decays $B \rightarrow \pi$ ($B \rightarrow D$)

Inclusive vs exclusive $V_{ub} \& V_{cb}$

Possible to reconcile through BSM scenarios that produce RH currents at low energy

$$\mathcal{H}_{\mathsf{eff}} = \frac{G_{\mathsf{F}}}{\sqrt{2}} V_{ub}^{\mathsf{L}} \left[(1 + \epsilon_{\mathsf{R}}) \bar{u} \gamma^{\mu} b - (1 - \epsilon_{\mathsf{R}}) \bar{u} \gamma^{\mu} \gamma_{5} b \right] \bar{\ell} \gamma_{\mu} (1 - \gamma_{5}) \nu$$

Λ_b decays

See more in talk of Mike Williams, Th 08:30

- Bottom baryons provide another exclusive decay channel: $\Lambda_b \rightarrow p \mathbf{l} \mathbf{v}$
- = LHCb: branching fraction ratio measured $\frac{\int_{15 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{d\Gamma(\Lambda_b \to p \, \mu^- \bar{\nu}_{\mu})}{dq^2} dq^2}{\int_{7 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{d\Gamma(\Lambda_b \to \Lambda_c \, \mu^- \bar{\nu}_{\mu})}{dq^2} dq^2} = (1.00 \pm 0.04 \pm 0.08) \times 10^{-2}$

[1504.01568=Nature Phys. 11 (2015)]

Extraction of |V_{ub}/V_{cb}| requires hadronic matrix elements

 $\begin{array}{l} \langle p \, | \, \overline{u} \gamma^{\mu} b \, | \Lambda_b \rangle, & \langle p \, | \, \overline{u} \gamma^{\mu} \gamma_5 b \, | \Lambda_b \rangle, \\ \langle \Lambda_c | \, \overline{c} \gamma^{\mu} b \, | \Lambda_b \rangle, & \langle \Lambda_c | \, \overline{c} \gamma^{\mu} \gamma_5 b \, | \Lambda_b \rangle \end{array}$

from LQCD

 $\mathcal{H}_{\mathsf{eff}}$

b

 Λ_b

LQCD calculation

- Careful consideration of systematic uncertainties
 - Precise at large q²
- Coordinated with LHCb (ffs needed during analysis)
- Compare partial integrals $\left|\frac{V_{ub}}{V_{cb}}\right| = 0.083(4)_{expt}(4)_{latt}$
- Combine with exclusive V_{cb} to get |V_{ub}|

LQCD calculation

- Careful consideration of systematic uncertainties
 - Precise at large q²
- Coordinated with LHCb (ffs needed during analysis)
- Compare partial integrals $\left|\frac{V_{ub}}{V_{cb}}\right| = 0.083(4)_{expt}(4)_{latt}$
- Combine with exclusive V_{cb}
 to get |V_{ub}|

Inclusive vs exclusive V_{ub}

Consistent with mesonic exclusive measurement

$$|V_{ub}| = 3.27(0.15)_{\text{expt}}(0.16)_{\text{latt}}(0.06)_{V_{cb}} \times 10^{-3}$$

Inclusive vs exclusive V_{ub}

Consistent with mesonic exclusive measurement

$$|V_{ub}| = 3.27(0.15)_{\text{expt}}(0.16)_{\text{latt}}(0.06)_{V_{cb}} \times 10^{-3}$$

New LQCD calculations for $B \rightarrow \pi$ decays too!

Inclusive vs exclusive V_{ub}

Different dependence of baryon decay disfavours RH currents as a solution to inclusive/exclusive tension

figure modified from LHCb 1504.01568

Inclusive vs exclusive $V_{ub} \& V_{cb}$

- Neutral kaon systems of intense interest for 50+ years
 - Physical states are combinations of CP eigenstates $\begin{aligned} |K_L\rangle \sim \left|K_{-}^{0}\right\rangle + \overline{\epsilon} \left|K_{+}^{0}\right\rangle \\ |K_S\rangle \sim \left|K_{+}^{0}\right\rangle + \overline{\epsilon} \left|K_{-}^{0}\right\rangle \end{aligned} \qquad \begin{vmatrix} K_{\pm}^{0} \rangle = \frac{1}{\sqrt{2}} \left[|K^{0}\rangle \mp |\overline{K}^{0}\rangle\right] \end{aligned} \qquad \begin{aligned} K_{\pm}^{0} = \overline{s}\gamma_5 d \\ \overline{K}_{-}^{0} = \overline{d}\gamma_5 s \end{aligned}$
 - First observation of CP violation [Christenson, Cronin, Fitch & Turlay 1964]

Indirect CP violation arises from mixing

$$i\frac{d}{dt}\begin{pmatrix} \left|K^{0}\right\rangle\\K^{0}\right\rangle = \begin{bmatrix}H_{00} & H_{0\bar{0}}\\H_{\bar{0}0} & H_{\bar{0}\bar{0}}\end{bmatrix}\begin{pmatrix} \left|K^{0}\right\rangle\\K^{0}\right\rangle$$

Predominantly from box diagram ($\Delta S=2.4q$ operator)

$$|\epsilon| = \frac{\mathrm{Im}\langle \bar{K}^0 | \mathcal{O}_{LL} | K^0 \rangle}{\Delta M_K} + \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}$$

 Conventional approach: take expt for Im A₀/Re A₀, ΔM_K, ''bag parameter'' from LQCD
 (\vec{K}^0 | O_{LL}^{\Delta S=2} | K^0 \rangle = \frac{8}{3} F_K^2 M_K^2 B_K(\mu)

 B_K under precise control

 \heta_K = \left(\frac{\bar{g}(\mu)^2}{4\pi}\right)^{-\gamma \varnot /2\beta_0} \exp\left\{ \int_0^{\bar{g}(\mu)}} dg\left(\frac{\gamma(g)}{\beta(g)} + \frac{\gamma_0}{\beta_0g}\right)\right\} B_K(\mu)

from A Juettner, Lattice 2015

K \rightarrow ππ decays

• Decays through either $\Delta I = 1/2$, $3/2 (\Delta S = 1)$ with amplitudes (δ_I = strong scattering phases)

$$A(K \to \pi \pi_I) \equiv A_I e^{i\delta_I} \qquad I = 0, 2$$

- Long standing puzzle ($\Delta I = 1/2$ rule) $\omega = \frac{\text{Re}A_2}{\text{Re}A_0} \sim \frac{1}{22}$
- Amplitudes relate to CP violating parameters as

$$\epsilon' = \frac{i\omega}{\sqrt{2}} e^{i(\delta_2 - \delta_0)} \left[\frac{\mathrm{Im}A_2}{\mathrm{Re}A_2} - \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0} \right]$$
$$|\epsilon| = \frac{\mathrm{Im}\langle \bar{K}^0 | \mathcal{O}_{LL} | K^0 \rangle}{\Delta M_K} + \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}$$

$K \rightarrow \pi \pi$ decays

- Many new developments by the RBC/UKQCD collaboration
 - Quantitative understanding of $\Delta I = 1/2$ rule [P Boyle et al . (RBC/UKQCD) Phys.Rev.Lett. 110 (2013) 15, 152001; T Blum et al. (RBC/UKQCD) Phys.Rev. D91 (2015) 7, 074502]
 - Important progress in calculating all pieces of ϵ and ϵ' directly from SM
 - Full calculations of decay amplitudes [Z Bai, et al. (RBC/UKQCD), 1505.07863]
 - Kaon mass difference: long distance contributions [Z Bai, et al. (RBC/UKQCD) Phys.Rev.Lett. 113 (2014) 112003]
- Additional progress on rare kaon decays [N Christ et al (RBC/UKQCD) 1507.03094]

$K \rightarrow \pi \pi$ decays: $\Delta I = 1/2$ rule

Decays through weak $\Delta I = 1/2$, $3/2 (\Delta S = 1)$ process

 Ten relevant operators in effective Hamiltonian (weak decays, QCD and EW penguin operators)

$$\mathcal{H}_{\Delta S=1} = \frac{G_F}{\sqrt{2}} \sum_{i=1}^{10} \left[V_{ud} V_{us}^* z_i(\mu) - V_{td} V_{ts}^* y_i(\mu) \right] \mathcal{Q}_i^{\overline{MS}}(\mu)$$

Short distance physics in Wilson coefficients $z_i(\mu)$ and $y_i(\mu)$

LQCD to determine matrix elements

$$\langle \pi \pi | \mathcal{Q}_j^{\prime \text{latt}} | \bar{K}^0 \rangle \qquad \qquad \mathcal{Q}_i^{\overline{MS}}(\mu) = Z_{ij}^{latt \to \overline{MS}}(\mu, a) \mathcal{Q}_j^{\prime \text{latt}}$$

(need to convert lattice operators to MSbar scheme)

$K \rightarrow \pi \pi$ decays: $\Delta I = 1/2$ rule

- Consider operator $Q_{(27,1)}^{3/2} = (\bar{s}^i d^i)_L \{ (\bar{u}^j u^j)_L (\bar{d}^j d^j)_L \} + (\bar{s}^i u^i)_L (\bar{u}^j d^j)_L \}$
- Matrix element evaluation can be Fierzed into two "colour contractions"
 i,j colour indices

- For $\Delta I = 3/2$ contributions add (1 + 2) so significant cancelation
- More complex for $\Delta I = 1/2$, but roughly enhanced rather than suppressed

$$\frac{\text{Re}A_2}{\text{Re}A_0} \sim \frac{(1) + (2)}{2(2) - (1)} \sim |0 - |5|$$

Muon g-2

• Long standing discrepancy between measured value and SM estimate for muon anomalous magnetic moment (~ 3σ)

- Sign of new physics or problem with theory?
- New experiments aiming at 4-fold uncertainty reduction (E989 @ Fermilab, E34 @ JPARC)

Requires commensurate control of theory

Standard Model (g-2)_µ

Snowmass: The Muon (g-2) Theory Value: Present and Future [T Blum et al. 1311.2198]

Measured value

 $a_{\mu}^{\text{E821}} = (116\,592\,089\pm63) \times 10^{-11} \quad (0.54\,\text{ppm})$

 Breakdown of contributions (2 evaluations of HVP)

	Value (× 10^{-11}) units
QED $(\gamma + \ell)$	$116584718.951\pm0.009\pm0.019\pm0.007\pm0.077_{\alpha}$
HVP(lo) [20]	6923 ± 42
HVP(lo) [21]	6949 ± 43
HVP(ho) [21]	-98.4 ± 0.7
HLbL	105 ± 26
EW	154 ± 1
Total SM $[20]$	$116591802 \pm 42_{\rm H-LO} \pm 26_{\rm H-HO} \pm 2_{\rm other}(\pm 49_{\rm tot})$
Total SM $[21]$	$116591828 \pm 43_{\rm H\text{-}LO} \pm 26_{\rm H\text{-}HO} \pm 2_{\rm other}(\pm 50_{\rm tot})$

Deviation

$$\Delta a_{\mu} (\text{E821} - \text{SM}) = (287 \pm 80) \times 10^{-11} [20]$$

= $(261 \pm 78) \times 10^{-11} [21]$

Standard Model (g-2)µ

Snowmass: The Muon (g-2) Theory Value: Present and Future [T Blum et al. 1311.2198]

Measured value

 $a_{\mu}^{\text{E821}} = (116\,592\,089\pm63) \times 10^{-11} \quad (0.54\,\text{ppm})$

 Breakdown of contributions (2 evaluations of HVP)

	Value $(\times 10^{-11})$ units
QED $(\gamma + \ell)$	$116584718.951\pm0.009\pm0.019\pm0.007\pm0.077_{\alpha}$
HVP(lo) [20]	6923 ± 42
HVP(lo) [21]	6949 ± 43
HVP(ho) [21]	-98.4 ± 0.7
HLbL	105 ± 26
\mathbf{EW}	154 ± 1
Total SM $[20]$	$116591802 \pm 42_{\rm H-LO} \pm 26_{\rm H-HO} \pm 2_{\rm other}(\pm 49_{\rm tot})$
Total SM $[21]$	$116591828 \pm 43_{\rm H\text{-}LO} \pm 26_{\rm H\text{-}HO} \pm 2_{\rm other}(\pm 50_{\rm tot})$

Deviation

$$\Delta a_{\mu} (\text{E821} - \text{SM}) = (287 \pm 80) \times 10^{-11} [20]$$

= $(261 \pm 78) \times 10^{-11} [21]$

Hot topic in LQCD

LQCD requirements

Lattice	precision	timescale	benchmark		
HVP	1-2%	Few years	τ e+e ⁻ discrepancy		
HVP	sub-%	This decade Competitive w/ e+e ⁻			
hLbL	any	soon	Course Verification of models		
hLbL	~30%	3-5 years	Competitive with models		
hLbL	~10%	Ultimate goal	Replace models		

[B Casey Lattice 2014 projections]

- Hugely active area of LQCD
 - Efforts to increase precision on HVP
 - Exploration of techniques to address HLbL

g-2 presentaions @ Lattice conf

Hadronic vacuum polarisation

 μ

- Can be computed from SM directly [Blum PRL91 (2003) 052001]
- Analytically continue to Euclidean space [T Blum PRL91 (2003) 052001]

 $K^2 = -q^2 > 0$

Use modified kernel

Precision goal is challenging, but $^{\mu}_{\mu}$ calculations rapidly improving a_{μ}^{HV}

 Major technical improvements at low K² where f(K²) is pea^{a)}

Ready for large scale calcula

 $\Pi^{(4)}_{\mu\nu\rho\sigma}(q,k_1,k_3,k_2) = \int d^4x_1 \, d^4x_2 \, d^4x_3 \, \exp[-i(k_1 \cdot x_1 + k_2 \cdot x_2 + k_3 \cdot x_3)]$ HLbL smaller but hard to determine $j_{\mu}[j_{\mu}(0)j_{\nu}(x_1)j_{\rho}(x_2)j_{\sigma}(x_3)]|0\rangle$

- Currently guesstimated from models (see Colangelo et al. for dispersive analysis of some pieces)
- Accessible in LQCD from 4-pt correlator

$$\Gamma^{(\text{Hlbl})}_{\mu}(p_2, p_1) = ie^6 \int \frac{d^4k_1}{(2\pi)^4} \frac{d^4k_2}{(2\pi)^4} \frac{\Pi^{(4)}_{\mu\nu\rho\sigma}(q, k_1, k_3, k_2)}{k_1^2 k_2^2 k_3^2} \times \gamma_{\nu} S^{(\mu)}(p_2 + k_2) \gamma_{\rho} S^{(\mu)}(p_1 + k_1) \gamma_{\sigma}$$

 $\Pi^{(4)}_{\mu\nu\rho\sigma}(q,k_1,k_3,k_2) = \int d^4x_1 d^4x_2 d^4x_3 \exp[-i(k_1 \cdot x_1 + k_2 \cdot x_2 + k_3 \cdot x_3)] \\ \times \langle 0|T[j_{\mu}(0)j_{\nu}(x_1)j_{\rho}(x_2)j_{\sigma}(x_3)]|0\rangle$

- 32 relevant tensor structures!
- Required for all $k_1, k_2!$

$$\Gamma^{(\text{Hlbl})}_{\mu}(p_2, p_1) = ie^6 \int \frac{d^4k_1}{(2\pi)^4} \frac{d^4k_2}{(2\pi)^4} \frac{\Pi^{(4)}_{\mu\nu\rho\sigma}(q, k_1, k_3, k_2)}{k_1^2 k_2^2 k_2^2}$$

- Recent calculation at fixed kinematics
 [Green et al., 1507.01577]
 - Comparison to model derived from dispersive analysis of $\gamma^*\gamma^* \rightarrow$ hadrons
- Not viable for all kinematics but may help constrain models

Sketches from T Blum

 Potentially simpler to evaluate in QCD+QED [T Blum et al.]

Sketches from T Blum

- Potentially simpler to evaluate in QCD+QED [T Blum et al.]
 - Keep one photon explicit

- Potentially simpler to evaluate in QCD+QED [T Blum et al.]
 - Keep one photon explicit
 - Allows for subtraction of unwanted (already counted) contributions

- Potentially simpler to evaluate in QCD+QED [T Blum et al.]
 - Keep one photon explicit
 - Allows for subtraction of unwanted (already counted) contributions

Sketches from T Blum

- Potentially simpler to evaluate in QCD+QED [T Blum et al.]
 - Keep one photon explicit
 - Allows for subtraction of unwanted (already counted) contributions
- Test calculation encouraging
 [Blum, Chowdhury, Hayakawa, Izubuchi 1407.2923]

- Potentially simpler to evaluate in QCD+QED [T Blum et al.]
 - Keep one photon explicit
 - Allows for subtraction of unwanted (already counted) contributions
- Test calculation encouraging
 [Blum, Chowdhury, Hayakawa, Izubuchi 1407.2923]
- Recent improvements in method: potential to get to 10% accuracy [Jin et al, Phys.Rev.Lett. 114 (2015) 1,012001]

 $q = 2\pi/L N_{\text{prop}} = 81000 \longmapsto$

- Potentially simpler to evaluate in QCD+QED [T Blum et al.]
 - Keep one photon explicit
 - Allows for subtraction of unwanted (already counted) contributions
- Test calculation encouraging
 [Blum, Chowdhury, Hayakawa, Izubuchi 1407.2923]
- Recent improvements in method: potential to get to 10% accuracy [Jin et al, Phys.Rev.Lett. 114 (2015) 1,012001]
- Still requires many further improvements to get final answer

Future prospects

Nuclear physics for neutrino/DM experiments

Precision Higgs physics at future colliders

Dark matter direct detection

- Prospect of unambiguous detection of dark matter is very exciting
- Typical DM detector: look for recoil in large bucket of nuclei
- Post-detection: aim to determine the nature of the interaction with nucleus
 - Understand target dependence and effects
 - Requires SM calculations of nuclear matrix elements of possible currents to distinguish them
- Potentially understand seemingly conflicting positive (DAMA/ CoGeNT, CDMS-Si) and negative signals (LUX, XENON,...)

http://www.hep.ucl.ac.uk/darkMatter/

Neutrino scattering

- Important goal of LBNF/DUNE: extraction of neutrino mass hierarchy and precise mixing parameters
- Requires knowing energies/fluxes to high accuracy
 - Neutrino scattering on argon target
 - Nuclear axial & transition form factors
 - Resonances
 - Neutrino-nucleus DIS
 - ~10% uncertainty on oscillation parameters [C Mariani, INT workshop 2013]

Nuclear uncertainties

- Nuclear matrix elements are not well understood
- Gamow-Teller transitions in nuclei are a stark example of problems (analogue of neutron decay)
- Best nuclear structure calculations are systematically off by 20–30%
 - Nuclei (30<A<60) where spectrum is well described
 - QRPA, shell-model,...
- Correct for it by arbitrarily "quenching" axial charge in nuclei
- Can NP become rigorous?

$$T(GT) \sim \sqrt{\sum_{f} \langle \boldsymbol{\sigma} \cdot \boldsymbol{\tau} \rangle_{i \to f}}$$

$$\langle \boldsymbol{\sigma} \boldsymbol{\tau}
angle = rac{\langle f || \sum_k \boldsymbol{\sigma}^k \boldsymbol{t}_{\pm}^k || i
angle}{\sqrt{2J_i + 1}}$$

LQCD for Nuclear Physics

- Nuclei arise from SM, so can be addressed using LQCD
- In practice: a hard problem
 - Multiple exponentially difficult challenges
- Recent progress shows light nuclei can be studied rigorously
 - Spectroscopy
 - Matrix elements
- Connect to larger nuclei through nuclear effective field theory [Weinberg 1991;Kaplan Savage Wise 1995,...]

Magnetic moments of nuclei

[NPLQCD PhysRevLett. 113 (2014) 25, 252001]

Precision Higgs physics

- Future ILC will determine Higgs couplings to unprecedented accuracy: further quantitative tests of SM
 - Requires precise SM inputs and calculations
 - High order pQCD calculations
 - Commensurately precise b, c quark masses, strong coupling
- Recent study [Lepage, Mackenzie & Peskin 1404.0319] of prospects for reaching requisite precision for relative uncertainties in Higgs partial widths

Precision Higgs physics

Consider expected growth in computing resources in ILC timeframe [1404.0319]

	$\delta m_b(10)$	$\delta \alpha_s(m_Z)$	$\delta m_c(3)$	δ_b	δ_c	δ_g
current errors [10]	0.70	0.63	0.61	0.77	0.89	0.78
+ PT	0.69	0.40	0.34	0.74	0.57	0.49
+ LS	0.30	0.53	0.53	0.38	0.74	0.65
$+ LS^2$	0.14	0.35	0.53	0.20	0.65	0.43
+ PT + LS	0.28	0.17	0.21	0.30	0.27	0.21
$+ PT + LS^2$	0.12	0.14	0.20	0.13	0.24	0.17
$+ PT + LS^2 + ST$	0.09	0.08	0.20	0.10	0.22	0.09
ILC goal				0.30	0.70	0.60

- Allows finer lattice spacings (LS, LS²) and higher statistical precision (ST) (also requires higher order lattice perturbation theory matching)
- Will be an important contribution to Higgs program

Summary

- LQCD has come of age in the last decade and is a precision tool for many quantities
 - Flavour physics, charged leptons, nuclear effects, SM parameters
 - Not discussed: thermodynamics, hadron spectroscopy and structure, strongly interacting models of EWSB, composite DM,...
- Progress on many fronts
 - Increase precision (deal with newly relevant systematics: QED, isospin breaking)
 - Ways to compute new observables (nuclei, multi-body decays, nonlocal operator matrix elements
 - New computational tricks to get more from less flops
- Lots more to come

fin

Acknowledgements: S Meinel,, T Izubuchi, A Soni, and all the speakers at Lattice 2015