Coherent Pion Production at MINERvA

DPF2015
August 6, 2015
Aaron Mislivec
University of Rochester

$q^{2} | W^{\pm}$ $t | \pi^{\pm}$

Coherent Pion Production

- Produces forward lepton and pion while leaving nucleus in its ground state
- Model independent features:
 - No nuclear break-up
 - Small 4-momentum transfer to the nucleus, $|t|=|(p_v-p_{_{II}}-p_{_{TI}})|^2$
- Background to oscillation experiments
- Model used by oscillation experiments (Rein-Sehgal) agrees with higher energy data
- Recent experiments (K2K,SciBooNE) found no evidence for this process at low energy (E_v~1 GeV)

T2K & Coherent Pion Production

arXiv:1502.01550

ν_{μ} CC	ν_e CC
21.7%	26.0%
2.7%	3.2%
5.0%	4.7%
4.0%	2.7%
3.0%	2.5%
23.5%	26.8%
	21.7% 2.7% 5.0% 4.0%

T2K relative uncertainty (1 σ) on the predicted v_{μ} CC and v_{e} CC oscillated event rate

- Due to non-observation at low energy (E_v~1 GeV) by recent experiments, T2K has applied a 100% uncertainty on the coherent pion production rate
- Neutrino-nucleus interaction model uncertainties are T2K's largest source of systematic error for their oscillation analyses
- The uncertainty on the coherent pion production rate is a significant contribution to these uncertainties

Coherent Pion Production at MINERvA

- MINERvA has measured coherent pion production on carbon in its fully active tracker region for 1.5 < E_v < 20 GeV
- Model-independent identification of coherent interactions by
 - resolving vertex activity
 - reconstructing $|t|=|(p_v-p_u-p_\pi)|^2$

Coherent Pion Production at MINERvA

Event Selection: Vertex Energy

Visible energy within a region around the vertex is required to be consistent with a minimum ionizing muon and pion: $30 < E_{vtx} < 70 \text{ MeV}$

Event Selection: |t|

- MINERvA is able to reconstruct the 4-momentum transfer to the nucleus, $|t|=|(p_v-p_{_{11}}-p_{_{12}})|^2$
- Coherent candidates: |t| < 0.125 GeV²
- Sideband for tuning background: 0.2 < |t| < 0.6 GeV²

Background Tuning

- Signal & background simulated by GENIE neutrino event generator
- Background normalizations are fit in E_π in the sideband: 0.2 < |t| < 0.6 GeV²

Background	V _μ	Anti-v _µ
CCQE	0.7 +/-0.3	1.0 (fixed)
Non-CCQE W < 1.4 GeV	0.6 +/-0.3	0.7 +/-0.1
1.4 < W < 2.0 GeV	0.7 +/-0.1	0.6 +/-0.1
W > 2.0 GeV	1.1 +/-0.9	1.9 +/-0.3

ν_{μ} + $\mathbf{A} \rightarrow \mu^{-}$ + π^{+} + \mathbf{A} Events / 1.0 GeV **POT Normalized** COH 3.05e+20 POT Coherent QE **Candidates RES W<1.4** 1.4<W<2.0 W > 2.00.6 All Background Tuned 0.4 0.2 10 12 14 16 18 20 Reconstructed E, (GeV)

Systematics (1)

Flux Prediction

- Hadron production constrained by external data (NA49)
- Beam focusing & unconstrained interactions
- Neutrino-Nucleus Interaction Model
 - M_{ARES}, intra-nuclear scattering, etc.

Detector Model

- GEANT hadron propagation
- Detector alignment wrt neutrino beam

Energy Response

- Muon energy uncertainty from range/curvature
- Pion/proton response constrained by test beam program

ν_{μ} + A $\rightarrow \mu^{-}$ + π^{+} + A Events / 1.0 GeV **POT Normalized** COH 3.05e+20 POT Coherent QE **Candidates RES W<1.4** 1.4<W<2.0 W> 2.0 0.6 All Background Tuned 0.4 0.2 10 12 14 16 18 20 Reconstructed E, (GeV)

Systematics (2)

Sideband Model

- Accounts for remaining θ_{π} disagreement in the sideband after background tuning

Tracking Efficiency

 Accounts for data-MC differences in muon reconstruction efficiency due to unsimulated pile-up in MINOS

Vertex Energy

- Accounts for unsimulated multi-nucleon effects
- Guided by MINERvA's CCQE results, add a final state proton to 25% of events with a target neutron

Cross Section Calculation

Flux prediction

Unfolding to correct for resolution

Efficiency & acceptance

Cross Section Results (1)

At few GeV, the cross section from MINERvA data is smaller than the prediction of the Rein-Sehgal coherent model as implemented in GENIE

Cross Section Results (2)

MINERvA data for coherent scattering exhibits harder and more forward pions than the prediction of the Rein-Sehgal coherent model as implemented in GENIE

Future Results: Measuring dσ/dQ²

- Oscillation experiments use the Rein-Sehgal model for coherent scattering:
 - Based on Adler's PCAC theorem which relates the coherent scattering cross section at Q²=0 to the pion-nucleus elastic scattering cross section:

$$\left. \frac{d\sigma}{dxdyd|t|} \right|_{Q^2 = 0} = \frac{G^2 M E_{\nu}}{\pi^2} f_{\pi}^2 (1 - y) \left. \frac{d\sigma(\pi A \to \pi A)}{d|t|} \right|_{E_{\pi} = y E_{\nu}}$$

 Extrapolates to Q² > 0 by modifying the above equation with a multiplicative dipole form factor:

$$F_{dipole}^2(Q^2) = 1/(1 + Q^2/m_A^2)^2$$

- Assumes no vector current contribution, and therefore no vector axial vector interference
- We can test these assumptions of the Rein-Sehgal model by measuring dσ/dQ² for both neutrinos and antineutrinos

Future Results: Diffractive Pion Production (1)

Diffractive

Coherent

- Diffractive pion production off free protons
 - Not simulated in GENIE
 - Indistinguishable from coherent pion production when the recoil proton is undetected
- MINERvA's scintillator (CH) has equal numbers of free protons and carbon nuclei
- Estimating the acceptance and using a calculation by B. Kopeliovich, we estimate the contribution from diffractive scattering would be equivalent to 7% (4%) of the ν_μ (anti-ν_μ) GENIE coherent cross section on carbon

Future Results: Diffractive Pion Production (2)

Search for diffractive pion production among the coherent candidates by looking for a large energy deposition in a single strip near the event vertex resulting from the recoil proton ionization

Summary

- Improved knowledge of coherent pion production is important to current and future oscillation experiments
- MINERvA has made a model-independent measurement of coherent pion production
- In comparison to the coherent pion production model (Rein-Sehgal) used in oscillation experiments, MINERvA data exhibits
 - a lower production rate at few-GeV E_v
 - harder, more forward pions
- Future MINERvA results will include
 - dσ/dQ² measurement to further test the Rein-Sehgal coherent pion production model
 - a search for diffractive pion production off free protons

Thank You

The MINERvA Collaboration

2014 Summer Meeting, Duluth, Minnesota

Backup

Cross Section Results: dσ/dE

Cross Section Results: dσ/dθ

Selected Event Distributions

Event Selection: Proton Score

- Proton Score: dEdX proton likelihood of reconstructed hadron
- For neutrino sample, require proton score < 0.35 to reduce proton background, particularly CCQE

Background Tuning: Antineutrino

- Signal & background simulated by GENIE neutrino event generator
- Background normalizations are fit in E_π in the sideband: 0.2 < |t| < 0.6 GeV²

Background	V _μ	Anti-v _µ
CCQE	0.7 +/-0.3	1.0 (fixed)
Non-CCQE W < 1.4 GeV	0.6 +/-0.3	0.7 +/-0.1
1.4 < W < 2.0 GeV	0.7 +/-0.1	0.6 +/-0.1
W > 2.0 GeV	1.1 +/-0.9	1.9 +/-0.3

Kinematics Reconstruction

- We accurately measure p_u for muons reconstructed in both MINERvA & MINOS
- Since most pions interact in MINERvA, E_{π} is reconstructed as the sum of:
 - total non-muon calorimetric energy > 200 mm from event vertex
 - Mean single pion calorimetric energy (60 MeV) within 200 mm from event vertex
- Vertex exclusion region minimizes sensitivity to mis-modeling vertex activity in background interactions
- $E_v = E_{\mu} + E_{\pi}$ (assumes zero energy transfer to nucleus)
- Assume neutrino direction is parallel to beam axis

Systematics: Hadronic Response

- MINERvA test beam program: scaled-down version of MINERvA detector in a tertiary pion beam at the Fermilab Test Beam Facility
- MINERvA's response to pions (protons) constrained to 5% (3%)

Systematics: Vertex Energy

MINERvA's CCQE results found an excess in vertex energy in data compared to the GENIE prediction

Phys. Rev. Lett. 111, 022501 (2013) Phys. Rev. Lett. 111, 022502 (2013)

A fit to this excess prefers the addition of a final state proton with KE < 225 MeV to 25% of events with a target neutron

Motivated by these results, we estimated the effect of mis-modeling vertex activity on our analysis by overlaying a proton with KE < 225 MeV onto 25% of our background events with a target neutron