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Outline

Motivation: Because Dark Matter (?)

◦ More generally, astrophysics of scalar fields

Boson Stars: Gravitationally bound states of scalar fields

◦ History
◦ Our Method
◦ Results

Open Questions and Future Work
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Original Motivation: Dark Matter

The nature of Dark Matter (DM) is
one of the biggest questions in physics.

?

Identity Crisis

Light scalar DM, e.g. axions, a viable paradigm: can form BEC
states of large sizes (“Boson Stars”) which could compose DM.

What We Want To Know

How large and how massive are these condensates?
Are they stable?
How do they form?
How can we detect them?
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Boson Star History

Wheeler, “Geons” (1956)

◦ Macroscopic bound states of photons

Kaup, “Klein-Gordon Geon” (1968)

Ruffini and Bonazzola, “Systems of Self-Gravitating Particles
in General Relativity...” (1969)

Colpi, Shapiro, Wasserman, “Boson Stars: ...” (1986)

Barranco and Bernal, “Self-Gravitating System Made of
Axions” (2011)
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Boson Star History

Wheeler, “Geons” (1956)

Kaup, “Klein-Gordon Geon” (1968)

◦ Solved Einstein+Klein-Gordon (EKG) equations numerically for
a free complex scalar field

◦ Maximum mass for bound states: M free
max = .633M2

P/m

Chandrasekhar limit: Mmax ∼ M3
P/m

2
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Boson Star History

Wheeler, “Geons” (1956)

Kaup, “Klein-Gordon Geon” (1968)

Ruffini and Bonazzola, “Systems of Self-Gravitating Particles
in General Relativity...” (1969)

◦ Second-quantized a free real scalar field, put all N particles in
ground state |N〉

◦ Ground state expectation value of EKG equations
◦ Similar results to Kaup, but method is new (more on this later)

Colpi, Shapiro, Wasserman, “Boson Stars: ...” (1986)

Barranco and Bernal, “Self-Gravitating System Made of
Axions” (2011)
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Boson Star History

Wheeler, “Geons” (1956)

Kaup, “Klein-Gordon Geon” (1968)

Ruffini and Bonazzola, “Systems of Self-Gravitating Particles
in General Relativity...” (1969)

Colpi, Shapiro, Wasserman, “Boson Stars: ...” (1986)

◦ Solved EKG system for complex scalar with Vint = +λφ4

◦ Maximum mass M int
max = .062

√
λM3

P/m
2

◦ Very different from Kaup: M free
max = .633M2

P/m

Barranco and Bernal, “Self-Gravitating System Made of
Axions” (2011)
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Boson Star History

Wheeler, “Geons” (1956)

Kaup, “Klein-Gordon Geon” (1968)

Ruffini and Bonazzola, “Systems of Self-Gravitating Particles
in General Relativity...” (1969)

Colpi, Shapiro, Wasserman, “Boson Stars: ...” (1986)

Barranco and Bernal, “Self-Gravitating System Made of
Axions” (2011)

◦ Axion potential:

V (φ) = m2f 2
(

1− cos(φf )
)
≈ m2

2 φ
2 − λ

4!φ
4 + ...

◦ Used RB method to quantize field, found numerical solutions
with sizes R ∼ 1− 10 m and masses M ∼ 1013 − 1014 kg.

◦ ?: The corresponding Kaup mass is M ∼ 1020 kg for
m ∼ 10−5 eV. Why are BB solutions so small?
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Ruffini-Bonazzola Method

Consider in greater detail the RB method:

1. Begin with a canonically normalized second-quantized scalar field

φ =
∑
n,l,m

Rn,l(r)
[
e iEn,l tYm

l (θ, φ)an,l,m + h.c .
]

(1)

2. Build N-particle ground state

|N〉 =

(
a†1,0,0

)N
√
N!

|0〉 (2)

3. Evaluate expectation value of EKG equations

〈N|Gµν |N〉 =
1

M2
P

〈N|Tµν |N〉

〈N − 1|
[
�φ− 1

2
W ′(φ)

]
|N〉 = 0 (3)
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Ruffini-Bonazzola Method

The self-gravity of the scalar field perturbs the metric

ds2 = B(r)dt2 − A(r)dr2 − r2dΩ2 (4)

Find three coupled equations for R(r) ≡ R1,0,0(r), A(r), and B(r):

A′

A2 r
+

A− 1

A r2
=

1

MP
2

[
E 2N R2

B
+

N R ′2

A
+ 〈N|W (φ)|N〉

]
B ′

AB r
− A− 1

A r2
= − 1

MP
2

[
E 2N R2

B
+

N R ′2

A
− 〈N|W (φ)|N〉

]
√
N R ′′ +

√
N

(
2

r
+

B ′

2B
− A′

2A

)
R ′

+ A

[√
N E 2

B
R − 〈N − 1|W ′(φ)|N〉

]
= 0 (5)
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Limitations of RB Method

We consider the axion potential, W (φ) = m2f 2
(

1− cos(φf )
)

1. We quantize the field using a flat metric background. Large
metric deviations would imply an ill-defined N-particle state.

⇒ We must assume weak GR effects.

Expand metric functions
A(r) = 1− δa(r), B(r) = 1− δb(r) with

δ ≡ f 2/M2
P � 1.

2. Quantization is tree-level only, and would be modified by loop
effects and pair production if interactions are strong.

⇒ We must assume small binding energies.

∆ ≡
√

1− E 2/m2 � 1
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The Infrared Limit

We consider the axion potential, W (φ) = m2f 2
(

1− cos(φf )
)

Need to evaluate the expectation values (with
X (r) ≡ 2

√
NR(r)/f ):

〈N|W (φ)|N〉 = m2f 2
(

1− J0(X )
)

=
m2f 2

4

(
X 2 − 1

16
X 4 +O(X 6)

)

1. Different coefficients from näıve cosine expansion

2. Taking X (r) = ∆Y (x) (with x = ∆mr):
Powers of ∆ ⇔ operator dimension; leading order equations in
∆ correspond to the infrared limit of the theory.

Similar considerations for KG equation, where we have

〈N − 1|W ′(φ)|N〉 = m2f J1(X ) = m2f
2

(
X − 1

8X
3 +O(X 5)

)
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Leading Order Equations

To leading order in δ and ∆ we find simplified set of equations

What We Solved

a′(x) =
x

2
Y (x)2 − a(x)

x

b′(x) =
a(x)

x

Y ′′(x) = Y (x)− 2

x
Y ′(x)− 1

8
Y (x)3 + λ2 b(x)Y (x) (6)

Depends on only one free parameter, λ ≡
√
δ/∆.

Note: Leading corrections are O(δ) and O(λ2δ).
Requiring ∆� 1 and λ2δ � 1 gives the range of validity:

10−7 ∼

f

MP
� λ� MP

f

∼ 107

for QCD axions
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Solutions

0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

5

10

15

20

25

30

YHxL

We find wavefunction solutions
over several orders of magnitude
in λ with very similar shape

The parameter λ uniquely
determines M, R, and N (for a
given m, f )
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Macroscopic Properties

← Barranco and Bernal solutions correspond to λ ∼ 10−6

0.01 0.05 0.10 0.50 1 5

5×1017

1×1018

5×1018

1×1019

λ

M
[k

g
]

50

100

500

1000

5000

104

R
[k

m
]

(For m = 10−5 eV and f = 6× 1011 GeV)
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Decays of Axion Stars

!: For a given N, ∃ two states S1 and S2 with M1 < M2

⇒ S2 can decay to S1.

0.1 0.2 0.5 1.0 2.0 5.0
Λ

5

10

20

ma

fa

M

MP
Using M(∆) = Nm

√
1−∆2, we

can estimate the mass difference

δM

M
≈ 1

2

(
∆2

1 −∆2
2

)
=

1

2

(
λ−21 − λ

−2
2

)
δ

Mass difference typically a small fraction of total mass, but still
large amount of energy: typically & 1000 kg!
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Conclusions

Our expansion in δ and ∆ elucidates properties of axion stars
which were unknown or unclear previously

◦ The maximum mass is related to a stable binding energy
◦ The RB method is inherently limited to δ,∆� 1
◦ Higher-order terms in V (φ) expansion are suppressed by extra

powers of ∆ (irrelevant operators)

The maximum mass of axion stars is O(1019) kg with
R99 ∼ 1000 km for m = 10−5 eV and f = 6× 1011 GeV

◦ At fixed mf = Λ2, masses M change proportionally to f but
sizes R are constant with f

This method can be generalized to many classes of axions
(and possibly other potentials), provided f � MP and
(m − E )/m� 1 are satisfied

Thanks!
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Backup Slides
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Backup: Strong CP Problem

The θ-term in the QCD Lagrangian violates CP:

LQCD 3 θ
g2
s

32π2
G aµνG̃ a

µν (7)

But the lack of detection of a neutron EDM constrains the free
parameter θ severely:

dn ≈5× 10−16θ e · cm . 10−25 e · cm

⇒ θ . 10−10 (8)

In principle, θ ∼ O(1). Why should it be so small?
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Backup: Peccei-Quinn Mechanism

Solving the Strong-CP Problem:

Promote θ → a(x)/f , a dynamical field, whose potential is
minimized at a(x) = 0. Naturalness saved!

The Lagrangian for a(x) has a symmetry, U(1)PQ , which is
broken at the energy scale f

The physical axion field is the Goldstone boson of
U(1)PQ-breaking

φ is initially massless, but acquires a mass during the QCD phase
transition due to nonperturbative effects:

ma =
Λ2
QCD

f
(9)
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