Axion Stars (and Bose-Einstein Condensate Dark Matter)

Joshua Eby with

Peter Suranyi, Cenalo Vaz, Rohana Wijewardhana For more information, see arXiv: 1412.3430

DPF 2015, University of Michigan, Ann Arbor

August 6, 2015

Outline

- Motivation: Because Dark Matter (?)
 - More generally, astrophysics of scalar fields
- Boson Stars: Gravitationally bound states of scalar fields
 - History
 - Our Method
 - Results
- Open Questions and Future Work

Original Motivation: Dark Matter

The nature of Dark Matter (DM) is one of the biggest questions in physics.

Identity Crisis

Light scalar DM, e.g. axions, a viable paradigm: can form BEC states of large sizes ("Boson Stars") which could compose DM.

What We Want To Know

How large and how massive are these condensates?

Are they stable?

How do they form?

How can we detect them?

Original Motivation: Dark Matter

The nature of Dark Matter (DM) is one of the biggest questions in physics.

Identity Crisis

Light scalar DM, e.g. axions, a viable paradigm: can form BEC states of large sizes ("Boson Stars") which could compose DM.

What We Want To Know

How large and how massive are these condensates?

Are they stable?

How do they form?

How can we detect them?

- Wheeler, "Geons" (1956)
 - Macroscopic bound states of photons

- Wheeler, "Geons" (1956)
- Kaup, "Klein-Gordon Geon" (1968)
 - Solved Einstein+Klein-Gordon (EKG) equations numerically for a free complex scalar field
 - o Maximum mass for bound states: $M_{max}^{free} = .633 M_P^2/m$

Chandrasekhar limit: $M_{max} \sim M_P^3/m^2$

- Wheeler, "Geons" (1956)
- Kaup, "Klein-Gordon Geon" (1968)
- Ruffini and Bonazzola, "Systems of Self-Gravitating Particles in General Relativity..." (1969)
 - \circ Second-quantized a free real scalar field, put all N particles in ground state $|N\rangle$
 - Ground state expectation value of EKG equations
 - Similar results to Kaup, but method is new (more on this later)

- Wheeler, "Geons" (1956)
- Kaup, "Klein-Gordon Geon" (1968)
- Ruffini and Bonazzola, "Systems of Self-Gravitating Particles in General Relativity..." (1969)
- Colpi, Shapiro, Wasserman, "Boson Stars: ..." (1986)
 - \circ Solved EKG system for complex scalar with $V_{int} = +\lambda \phi^4$
 - Maximum mass $M_{max}^{int} = .062\sqrt{\lambda}M_P^3/m^2$
 - Very different from Kaup: $M_{max}^{free} = .633 M_P^2/m$

- Wheeler, "Geons" (1956)
- Kaup, "Klein-Gordon Geon" (1968)
- Ruffini and Bonazzola, "Systems of Self-Gravitating Particles in General Relativity..." (1969)
- Colpi, Shapiro, Wasserman, "Boson Stars: ..." (1986)
- Barranco and Bernal, "Self-Gravitating System Made of Axions" (2011)
 - Axion potential:

$$V(\phi) = m^2 f^2 \Big(1 - \cos(\frac{\phi}{f}) \Big) \approx \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 + \dots$$

• Used RB method to quantize field, found numerical solutions with sizes $R \sim 1-10$ m and masses $M \sim 10^{13}-10^{14}$ kg.

- Wheeler, "Geons" (1956)
- Kaup, "Klein-Gordon Geon" (1968)
- Ruffini and Bonazzola, "Systems of Self-Gravitating Particles in General Relativity..." (1969)
- Colpi, Shapiro, Wasserman, "Boson Stars: ..." (1986)
- Barranco and Bernal, "Self-Gravitating System Made of Axions" (2011)
 - Axion potential:

$$V(\phi) = m^2 f^2 \left(1 - \cos(\frac{\phi}{f})\right) \approx \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 + \dots$$

- Used RB method to quantize field, found numerical solutions with sizes $R\sim 1-10$ m and masses $M\sim 10^{13}-10^{14}$ kg.
- ?: The corresponding Kaup mass is $M \sim 10^{20}$ kg for $m \sim 10^{-5}$ eV. Why are BB solutions so small?

Consider in greater detail the RB method:

1. Begin with a canonically normalized second-quantized scalar field

$$\phi = \sum_{n,l,m} R_{n,l}(r) \left[e^{iE_{n,l}t} Y_l^m(\theta,\phi) a_{n,l,m} + h.c. \right]$$
 (1)

Consider in greater detail the RB method:

1. Begin with a canonically normalized second-quantized scalar field

$$\phi = \sum_{n,l,m} R_{n,l}(r) \left[e^{iE_{n,l}t} Y_l^m(\theta,\phi) a_{n,l,m} + h.c. \right]$$
 (1)

2. Build N-particle ground state

$$|N\rangle = \frac{\left(a_{1,0,0}^{\dagger}\right)^{N}}{\sqrt{N!}}|0\rangle \tag{2}$$

Consider in greater detail the RB method:

1. Begin with a canonically normalized second-quantized scalar field

$$\phi = \sum_{n,l,m} R_{n,l}(r) \left[e^{iE_{n,l}t} Y_l^m(\theta,\phi) a_{n,l,m} + h.c. \right]$$
 (1)

2. Build N-particle ground state

$$|N\rangle = \frac{\left(a_{1,0,0}^{\dagger}\right)^{N}}{\sqrt{N!}}|0\rangle \tag{2}$$

3. Evaluate expectation value of EKG equations

$$\langle N|G^{\mu\nu}|N\rangle = \frac{1}{M_P^2} \langle N|T^{\mu\nu}|N\rangle$$
$$\langle N-1|\Big[\Box \phi - \frac{1}{2}W'(\phi)\Big]|N\rangle = 0 \tag{3}$$

The self-gravity of the scalar field perturbs the metric

$$ds^{2} = B(r)dt^{2} - A(r)dr^{2} - r^{2}d\Omega^{2}$$
(4)

Find three coupled equations for $R(r) \equiv R_{1,0,0}(r)$, A(r), and B(r):

$$\frac{A'}{A^{2}r} + \frac{A-1}{Ar^{2}} = \frac{1}{M_{P}^{2}} \left[\frac{E^{2}NR^{2}}{B} + \frac{NR'^{2}}{A} + \langle N|W(\phi)|N\rangle \right]
\frac{B'}{ABr} - \frac{A-1}{Ar^{2}} = -\frac{1}{M_{P}^{2}} \left[\frac{E^{2}NR^{2}}{B} + \frac{NR'^{2}}{A} - \langle N|W(\phi)|N\rangle \right]
\sqrt{N}R'' + \sqrt{N} \left(\frac{2}{r} + \frac{B'}{2B} - \frac{A'}{2A} \right) R'
+ A \left[\frac{\sqrt{N}E^{2}}{B}R - \langle N-1|W'(\phi)|N\rangle \right] = 0$$
(5)

The self-gravity of the scalar field perturbs the metric

$$ds^{2} = B(r)dt^{2} - A(r)dr^{2} - r^{2}d\Omega^{2}$$
(4)

Find three coupled equations for $R(r) \equiv R_{1,0,0}(r)$, A(r), and B(r):

$$\frac{A'}{A^{2}r} + \frac{A-1}{Ar^{2}} = \frac{1}{M_{P}^{2}} \left[\frac{E^{2}NR^{2}}{B} + \frac{NR'^{2}}{A} + \langle N|W(\phi)|N \rangle \right]
\frac{B'}{ABr} - \frac{A-1}{Ar^{2}} = -\frac{1}{M_{P}^{2}} \left[\frac{E^{2}NR^{2}}{B} + \frac{NR'^{2}}{A} - \langle N|W(\phi)|N \rangle \right]
\sqrt{N}R'' + \sqrt{N} \left(\frac{2}{r} + \frac{B'}{2B} - \frac{A'}{2A} \right) R'
+ A \left[\frac{\sqrt{N}E^{2}}{B}R - \langle N-1|W'(\phi)|N \rangle \right] = 0$$
(5)

Limitations of RB Method

We consider the axion potential,
$$W(\phi) = m^2 f^2 \Big(1 - cos(\frac{\phi}{f}) \Big)$$

- 1. We quantize the field using a flat metric background. Large metric deviations would imply an ill-defined *N*-particle state.
 - \Rightarrow We must assume weak GR effects.

Expand metric functions
$$A(r)=1-\delta a(r),\ B(r)=1-\delta b(r)$$
 with $\delta\equiv f^2/M_P^2\ll 1.$

Limitations of RB Method

We consider the axion potential,
$$W(\phi) = m^2 f^2 \Big(1 - cos(\frac{\phi}{f}) \Big)$$

- 1. We quantize the field using a flat metric background. Large metric deviations would imply an ill-defined *N*-particle state.
 - \Rightarrow We must assume weak GR effects.

Expand metric functions
$$A(r)=1-\delta a(r),\ B(r)=1-\delta b(r)$$
 with $\delta\equiv f^2/M_P^2\ll 1.$

- 2. Quantization is tree-level only, and would be modified by loop effects and pair production if interactions are strong.
 - \Rightarrow We must assume small binding energies.

$$\Delta \equiv \sqrt{1 - E^2/m^2} \ll 1$$

We consider the axion potential, $W(\phi)=m^2f^2\left(1-\cos(\frac{\phi}{f})\right)$ Need to evaluate the expectation values (with $X(r)\equiv 2\sqrt{N}R(r)/f$):

$$\langle N|W(\phi)|N\rangle = m^2 f^2 \Big(1 - J_0(X)\Big)$$

= $\frac{m^2 f^2}{4} \Big(X^2 - \frac{1}{16}X^4 + \mathcal{O}(X^6)\Big)$

We consider the axion potential, $W(\phi)=m^2f^2\Big(1-\cos(\frac{\phi}{f})\Big)$ Need to evaluate the expectation values (with $X(r)\equiv 2\sqrt{N}R(r)/f$):

$$\langle N|W(\phi)|N\rangle = m^2 f^2 \Big(1 - J_0(X)\Big)$$

= $\frac{m^2 f^2}{4} \Big(X^2 - \frac{1}{16}X^4 + \mathcal{O}(X^6)\Big)$

1. Different coefficients from naïve cosine expansion

We consider the axion potential, $W(\phi)=m^2f^2\Big(1-\cos(\frac{\phi}{f})\Big)$ Need to evaluate the expectation values (with $X(r)\equiv 2\sqrt{N}R(r)/f$):

$$\langle N|W(\phi)|N\rangle = m^2 f^2 \Big(1 - J_0(X)\Big)$$

= $\frac{m^2 f^2}{4} \Big(X^2 - \frac{1}{16}X^4 + \mathcal{O}(X^6)\Big)$

- 1. Different coefficients from naïve cosine expansion
- 2. Taking $X(r) = \Delta Y(x)$ (with $x = \Delta mr$): Powers of $\Delta \Leftrightarrow$ operator dimension; leading order equations in Δ correspond to the infrared limit of the theory.

We consider the axion potential, $W(\phi)=m^2f^2\Big(1-\cos(\frac{\phi}{f})\Big)$ Need to evaluate the expectation values (with $X(r)\equiv 2\sqrt{N}R(r)/f$):

$$\langle N|W(\phi)|N\rangle = m^2 f^2 \Big(1 - J_0(X)\Big)$$

= $\frac{m^2 f^2}{4} \Big(X^2 - \frac{1}{16}X^4 + \mathcal{O}(X^6)\Big)$

- 1. Different coefficients from naïve cosine expansion
- 2. Taking $X(r) = \Delta Y(x)$ (with $x = \Delta mr$): Powers of $\Delta \Leftrightarrow$ operator dimension; leading order equations in Δ correspond to the infrared limit of the theory.

Similar considerations for KG equation, where we have $\langle N-1|W'(\phi)|N\rangle=m^2f\,J_1(X)=\frac{m^2f}{2}\Big(X-\frac{1}{8}X^3+\mathcal{O}(X^5)\Big)$

Leading Order Equations

To leading order in δ and Δ we find simplified set of equations

What We Solved

$$a'(x) = \frac{x}{2} Y(x)^{2} - \frac{a(x)}{x}$$

$$b'(x) = \frac{a(x)}{x}$$

$$Y''(x) = Y(x) - \frac{2}{x} Y'(x) - \frac{1}{8} Y(x)^{3} + \lambda^{2} b(x) Y(x)$$
 (6)

Depends on only one free parameter, $\lambda \equiv \sqrt{\delta}/\Delta$.

Leading Order Equations

To leading order in δ and Δ we find simplified set of equations

What We Solved

$$a'(x) = \frac{x}{2} Y(x)^{2} - \frac{a(x)}{x}$$

$$b'(x) = \frac{a(x)}{x}$$

$$Y''(x) = Y(x) - \frac{2}{x} Y'(x) - \frac{1}{8} Y(x)^{3} + \lambda^{2} b(x) Y(x)$$
 (6)

Depends on only one free parameter, $\lambda \equiv \sqrt{\delta}/\Delta$.

Note: Leading corrections are $\mathcal{O}(\delta)$ and $\mathcal{O}(\lambda^2 \delta)$.

Requiring $\Delta \ll 1$ and $\lambda^2 \delta \ll 1$ gives the range of validity:

$$\frac{f}{M_P} \ll \lambda \ll \frac{M_P}{f}$$

Leading Order Equations

To leading order in δ and Δ we find simplified set of equations

What We Solved

$$a'(x) = \frac{x}{2} Y(x)^{2} - \frac{a(x)}{x}$$

$$b'(x) = \frac{a(x)}{x}$$

$$Y''(x) = Y(x) - \frac{2}{x} Y'(x) - \frac{1}{8} Y(x)^{3} + \lambda^{2} b(x) Y(x)$$
 (6)

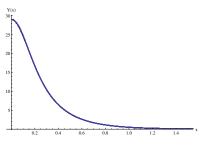
Depends on only one free parameter, $\lambda \equiv \sqrt{\delta}/\Delta$.

<u>Note:</u> Leading corrections are $\mathcal{O}(\delta)$ and $\mathcal{O}(\lambda^2 \delta)$.

Requiring $\Delta \ll 1$ and $\lambda^2 \delta \ll 1$ gives the range of validity:

$$10^{-7} \sim \frac{f}{M_P} \ll \lambda \ll \frac{M_P}{f} \sim 10^7$$
 for QCD axions

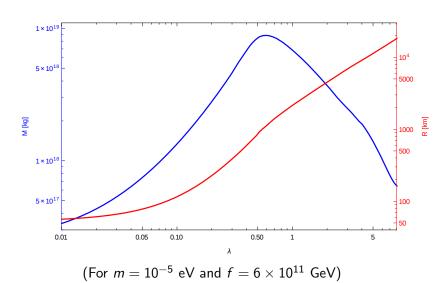
Solutions



λ	M (kg)	$R_{99} ({\rm km})$	d (kg/m ³)	$\delta M (\mathrm{kg})$
0.1	1.34×10^{18}	115	207	167000.
0.3	4.61×10^{18}	386	19.1	61700.
0.4	6.78×10^{18}	593	7.74	44700.
0.5	8.44×10^{18}	854	3.24	21700.
0.54	8.74×10^{18}	972	2.27	11100.
0.58	8.84×10^{18}	1076	1.69	1570.
0.62	8.81×10^{18}	1183	1.27	-7160.
0.8	7.98×10^{18}	1652	0.422	-30900.
1	6.85×10^{18}	2145	0.166	-44100.
2	3.71×10^{18}	4499	0.0097	-71200.
4	1.9×10^{18}	9062	0.0006	-11800.
10	7.65×10^{17}	22849	0.000015	-355000.

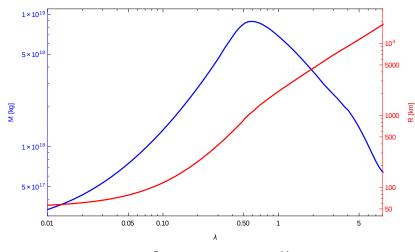
- We find wavefunction solutions over several orders of magnitude in λ with very similar shape
- The parameter λ uniquely determines M, R, and N (for a given m, f)

Macroscopic Properties



Macroscopic Properties

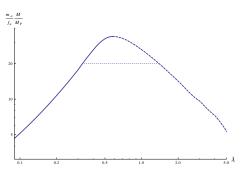
 \leftarrow Barranco and Bernal solutions correspond to $\lambda \sim 10^{-6}$



(For $m=10^{-5}$ eV and $f=6 imes 10^{11}$ GeV)

Decays of Axion Stars

!: For a given N, \exists two states S_1 and S_2 with $M_1 < M_2$ $\Rightarrow S_2$ can decay to S_1 .



Using $M(\Delta) = Nm\sqrt{1 - \Delta^2}$, we can estimate the mass difference

$$\begin{split} \frac{\delta \textit{M}}{\textit{M}} &\approx \frac{1}{2} \Big(\Delta_1^2 - \Delta_2^2 \Big) \\ &= \frac{1}{2} \Big(\lambda_1^{-2} - \lambda_2^{-2} \Big) \delta \end{split}$$

Mass difference typically a small fraction of total mass, but still large amount of energy: typically $\gtrsim 1000~\text{kg}!$

Conclusions

- ullet Our expansion in δ and Δ elucidates properties of axion stars which were unknown or unclear previously
 - The maximum mass is related to a stable binding energy
 - The RB method is *inherently* limited to $\delta, \Delta \ll 1$
 - Higher-order terms in $V(\phi)$ expansion are suppressed by extra powers of Δ (irrelevant operators)
- The maximum mass of axion stars is $\mathcal{O}(10^{19})$ kg with $R_{99} \sim 1000$ km for $m=10^{-5}$ eV and $f=6\times 10^{11}$ GeV
 - At fixed $mf = \Lambda^2$, masses M change proportionally to f but sizes R are constant with f
- This method can be generalized to many classes of axions (and possibly other potentials), provided $f \ll M_P$ and $(m-E)/m \ll 1$ are satisfied
- Thanks!

References

- Wheeler. "Geons." Phys. Rev., 97 (1955), p. 511
- David J. Kaup. "Klein-gordon geon." Physical Review, 172(5):1331–1342, August 1968.
- Ruffini and Bonazzola. "Systems of self-gravitating particles in general relativity and the concept of an equation of state." *Physical Review*, 187(5):1767–1783, November 1969.
- Colpi, Shapiro, and Wasserman. "Boson stars: Gravitational equilibria of self-interacting scalar fields." *Physical Review Letters*, 57(20):2485–2488, November 1986.
- Barranco and Bernal. "Self-gravitating system made of axions." Phys. Rev. D, 83, 043525, (2011). [arXiv:1001.1769].
- JE, Peter Suranyi, Cenalo Vaz, and L. C. R. Wijewardhana. "Axion stars in the infrared limit." *Journal of High Energy Physics*, 2015(3):1–15, March 2015. [arXiv:1412.3430]

Backup Slides

Backup: Strong CP Problem

The θ -term in the QCD Lagrangian violates *CP*:

$$\mathcal{L}_{QCD} \ni \theta \frac{g_s^2}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu} \tag{7}$$

But the lack of detection of a neutron EDM constrains the free parameter θ severely:

$$d_n \approx 5 \times 10^{-16} \theta \text{ e} \cdot \text{cm} \lesssim 10^{-25} \text{ e} \cdot \text{cm}$$

 $\Rightarrow \theta \lesssim 10^{-10}$ (8)

In principle, $\theta \sim \mathcal{O}(1)$. Why should it be so small?

Backup: Peccei-Quinn Mechanism

Solving the Strong-CP Problem:

- Promote $\theta \to a(x)/f$, a dynamical field, whose potential is minimized at a(x) = 0. Naturalness saved!
- The Lagrangian for a(x) has a symmetry, $U(1)_{PQ}$, which is broken at the energy scale f
- The physical axion field is the Goldstone boson of $U(1)_{PQ}$ -breaking

 ϕ is initially massless, but acquires a mass during the QCD phase transition due to nonperturbative effects:

$$m_a = \frac{\Lambda_{QCD}^2}{f} \tag{9}$$