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Overview

1 Introduction

2 Connection between Lyman-α forest and DM annihilation

3 Non-thermal p-wave annihilation
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Cookbook for discovering DM

Three ways we can go about it:

X Production at colliders

X Direct detection

X Indirect detection
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Cookbook for discovering DM

Three ways we can go about it:

X Production at colliders
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This talk will be about an indirect2 detection method.

2No, it is not a footnote. I really mean squared.
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Motivation

X Energy injection due to DM annihilation/decay can potentially modify
the thermal history of the Universe.

X At high redshift (z ∼ 1000) CMB anisotropies put strong constraints
on the WIMP mass and annihilation cross section. But it is cosmic
variance limited.

X Looking forward to 21-cm cosmology (50 . z . 200) and CMB
spectral distortions (103 . z . 105)!

X At the low-redshift end, Lyman-α forest has dirty astrophysics. But
the background characterization is improving (Haardt & Madau,
2012).
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How can WIMP annihilations effect the Lyman-α forest?

X Inject UV/X-ray (10-100 eV) photons directly into the IGM?

X Inject low energy e−/e+ and let them collisionally ionize the IGM?

X Inject relativistic e−/e+ and let them upscatter the CMB to the
UV/X-ray band!
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The model

X Assume that thermally frozen-out WIMPs, Mχ = O(100) GeV,
annihilate to pairs of bb̄, which then produce showers of ∼ O(1) GeV
e−/e+.

X Wherever τloss > τdiff , these e−/e+ diffusively cool and escape the
DM halo into the IGM.

X They later up-scatter the CMB photons in the IGM with
τloss ∼ 1/(1 + z)4 Byrs.

X Resulting UV and X-ray photons can potentially contribute to the
ionization state of the IGM.
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Injection spectrum
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Injection spectrum

e−/e+ multiplicity (green) peaks at ∼ 0.01Mχ in hadronic annihilations
channels and ∼ 0.1Mχ in leptonic channels (Cirelli et al. 2012).
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DM annihilations

X DM annihilation emissivity is given by,

j(~r , z ,Ee) ≡ E 2
e

dN

dV dt dEe
(~r , z ,Ee) = ×E 2

e

dNann

dEe
× 〈σv〉~v × n2(~r , z)

=
〈σv〉~v
M2
χ

× E 2
e

dNann

dEe
× ρ2(~r , z).

X After DM particles start clustering the spatially averaged signal is
averaged over a collection of halos,

〈j(z ,Ee)〉~r ≈ 〈j〉halos(z ,Ee) =

∫
dM

dN

dM

∫
Vvir

d3~r j(r , z ,Ee).

Tansu Daylan Photoionization of the IGM by DM annihilations Connection between Lyman-α forest and DM annihilation 8 / 16



DM annihilations

X DM annihilation emissivity is given by,

j(~r , z ,Ee) ≡ E 2
e

dN

dV dt dEe
(~r , z ,Ee) = ×E 2

e

dNann

dEe
× 〈σv〉~v × n2(~r , z)

=
〈σv〉~v
M2
χ

× E 2
e

dNann

dEe
× ρ2(~r , z).

X After DM particles start clustering the spatially averaged signal is
averaged over a collection of halos,

〈j(z ,Ee)〉~r ≈ 〈j〉halos(z ,Ee) =

∫
dM

dN

dM

∫
Vvir

d3~r j(r , z ,Ee).

Tansu Daylan Photoionization of the IGM by DM annihilations Connection between Lyman-α forest and DM annihilation 8 / 16



DM annihilations

X DM annihilation emissivity is given by,

j(~r , z ,Ee) ≡ E 2
e

dN

dV dt dEe
(~r , z ,Ee) = ×E 2

e

dNann

dEe
× 〈σv〉~v × n2(~r , z)

=
〈σv〉~v
M2
χ

× E 2
e

dNann

dEe
× ρ2(~r , z).

X After DM particles start clustering the spatially averaged signal is
averaged over a collection of halos,

〈j(z ,Ee)〉~r ≈ 〈j〉halos(z ,Ee) =

∫
dM

dN

dM

∫
Vvir

d3~r j(r , z ,Ee).

Tansu Daylan Photoionization of the IGM by DM annihilations Connection between Lyman-α forest and DM annihilation 8 / 16



Using the CMB as a calorimeter for annihilation products
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Using the CMB as a calorimeter for annihilation products

The UV/X-ray photon emissivity is collected as the integral ICS power
radiated by the e−/e+.

jγ(Eγ , z) =

∫ MDM

me

dEe
dPic

dEe
(Eγ ,Ee , z)Ψigm

e (Ee , z)
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The photoionizing background
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The photoionizing background

The UV/X-ray emissivity can be projected on the sky to get the intensity

I (Eγ , z) =
c

4π

∫ ∞
z

dz ′
dt

dz ′
(1 + z)3

(1 + z ′)3
jγ(E ′γ , z

′)e−τeff (E ′
γ ,z,z

′).
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DM as an efficient photo-ionizer of the IGM

X Mess up with the mean concentration-mass relation or level of
substructure around the scale radius?

X Change the production history of the WIMP?
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Thermal production of WIMPs under siege

X The relic abundance of a thermally produced WIMP is set by the
annihilation cross section.

ΩCDM ≈ 0.25

(
3× 10−26 cm3/s

〈σv〉

)
X It is UV-insensitive (passes the Occam’s Razor) and well-motivated.

X However CMB anisotropies require (Silvia et al. 2011)

pann ≡ f (z)
〈σv〉
Mχ

. 2× 10−27 cm3/s/GeV

X Similarly gamma-rays from stacked dwarf galaxies constrain thermal
production to Mχ & 100 GeV (Fermi-LAT and DES collaborations,
2015).

Tansu Daylan Photoionization of the IGM by DM annihilations Non-thermal p-wave annihilation 12 / 16



Thermal production of WIMPs under siege

X The relic abundance of a thermally produced WIMP is set by the
annihilation cross section.

ΩCDM ≈ 0.25

(
3× 10−26 cm3/s

〈σv〉

)

X It is UV-insensitive (passes the Occam’s Razor) and well-motivated.

X However CMB anisotropies require (Silvia et al. 2011)

pann ≡ f (z)
〈σv〉
Mχ

. 2× 10−27 cm3/s/GeV

X Similarly gamma-rays from stacked dwarf galaxies constrain thermal
production to Mχ & 100 GeV (Fermi-LAT and DES collaborations,
2015).

Tansu Daylan Photoionization of the IGM by DM annihilations Non-thermal p-wave annihilation 12 / 16



Thermal production of WIMPs under siege

X The relic abundance of a thermally produced WIMP is set by the
annihilation cross section.

ΩCDM ≈ 0.25

(
3× 10−26 cm3/s

〈σv〉

)
X It is UV-insensitive (passes the Occam’s Razor) and well-motivated.

X However CMB anisotropies require (Silvia et al. 2011)

pann ≡ f (z)
〈σv〉
Mχ

. 2× 10−27 cm3/s/GeV

X Similarly gamma-rays from stacked dwarf galaxies constrain thermal
production to Mχ & 100 GeV (Fermi-LAT and DES collaborations,
2015).

Tansu Daylan Photoionization of the IGM by DM annihilations Non-thermal p-wave annihilation 12 / 16



Thermal production of WIMPs under siege

X The relic abundance of a thermally produced WIMP is set by the
annihilation cross section.

ΩCDM ≈ 0.25

(
3× 10−26 cm3/s

〈σv〉

)
X It is UV-insensitive (passes the Occam’s Razor) and well-motivated.

X However CMB anisotropies require (Silvia et al. 2011)

pann ≡ f (z)
〈σv〉
Mχ

. 2× 10−27 cm3/s/GeV

X Similarly gamma-rays from stacked dwarf galaxies constrain thermal
production to Mχ & 100 GeV (Fermi-LAT and DES collaborations,
2015).

Tansu Daylan Photoionization of the IGM by DM annihilations Non-thermal p-wave annihilation 12 / 16



Thermal production of WIMPs under siege

X The relic abundance of a thermally produced WIMP is set by the
annihilation cross section.

ΩCDM ≈ 0.25

(
3× 10−26 cm3/s

〈σv〉

)
X It is UV-insensitive (passes the Occam’s Razor) and well-motivated.

X However CMB anisotropies require (Silvia et al. 2011)

pann ≡ f (z)
〈σv〉
Mχ

. 2× 10−27 cm3/s/GeV

X Similarly gamma-rays from stacked dwarf galaxies constrain thermal
production to Mχ & 100 GeV (Fermi-LAT and DES collaborations,
2015).

Tansu Daylan Photoionization of the IGM by DM annihilations Non-thermal p-wave annihilation 12 / 16



Non-thermal production of WIMPs

X If a heavy species produced during inflation, Ψ, decays
out-of-equilibrium to DM, after its thermal freeze-out, then

ΩNT
CDM ≈ 0.25

(
3× 10−26 cm3/s

〈σv〉

)
Tf

Tr
.

X The reheat of the Universe follows the freeze-out (Tr < Tf ∼ 100
GeV), but should preceed the BBN (TBBN ∼ 1 MeV < Tr ).

X However boosting the s-wave annihilation cross section violates the
constraints!
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p-wave annihilation

X In constrast p-wave annihilation

〈σv〉~v ≈ a + b〈v2〉~v , b � a

is only significant around freeze-out and at low-redshift.

X The emissivity becomes

∝
∫

dM
dN

dM

∫
Vvir

d3~r 〈σv〉~v (r , z)× ρ2(r , z)

X Given the DM velocity variance during the freeze-out, 〈v2f 〉 ≈ 0.1, and
the observed velocity variance in galaxy clusters, 〈v2c 〉 ≈ ×10−5, a
p-wave velocity suppression of 10−4 is more than compensated by a
non-thermal production boost of Tf /Tr ∼ 105.
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A potentially relevant low-redshift anomaly
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A potentially relevant low-redshift anomaly

Cosmological simulations tied to the intermediate redshift Lyman-α forest
predict a 5× larger metagalactic ionization rate at low-redshift than the
cosmic UV background synthesis models. (Kollmeier et al., 2014;
Puchwein et al., 2014)
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Conclusion

X s-wave annihilations of thermal WIMPs cannot contribute to the
photoionization of the IGM at low-redshift.

X p-wave annihilations of non-thermally produced DM can do better,
avoiding CMB anisotropy constraints.

X This scenario was initially motivated by the gamma-ray excess in the
inner galaxy (Goodenough and Hooper, 2009).

X However this is no longer the case if DM is non-thermally produced
and is predominantly annihilating in the p-wave. (See Stephen’s talk
on Tuesday for the other reason.)
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