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© Non-thermal p-wave annihilation
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Cookbook for discovering DM

Three ways we can go about it:
v" Production at colliders
v" Direct detection

. . Colliders
v Indirect detection -— -~
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Indirect Detection

This talk will be about an indirect? detection method.

2No, it is not a footnote. | really mean squared.
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v" Energy injection due to DM annihilation/decay can potentially modify
the thermal history of the Universe.
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v" Energy injection due to DM annihilation/decay can potentially modify
the thermal history of the Universe.

v" At high redshift (z ~ 1000) CMB anisotropies put strong constraints
on the WIMP mass and annihilation cross section. But it is cosmic

variance limited.
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Motivation

v" Energy injection due to DM annihilation/decay can potentially modify
the thermal history of the Universe.

v" At high redshift (z ~ 1000) CMB anisotropies put strong constraints
on the WIMP mass and annihilation cross section. But it is cosmic
variance limited.

v" Looking forward to 21-cm cosmology (50 < z < 200) and CMB
spectral distortions (10% < z < 109)!
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Motivation

v" Energy injection due to DM annihilation/decay can potentially modify
the thermal history of the Universe.

v" At high redshift (z ~ 1000) CMB anisotropies put strong constraints
on the WIMP mass and annihilation cross section. But it is cosmic
variance limited.

v" Looking forward to 21-cm cosmology (50 < z < 200) and CMB
spectral distortions (10% < z < 109)!

v At the low-redshift end, Lyman-« forest has dirty astrophysics. But
the background characterization is improving (Haardt & Madau,
2012).
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How can WIMP annihilations effect the Lyman-« forest?
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How can WIMP annihilations effect the Lyman-« forest?

v Inject UV/X-ray (10-100 eV) photons directly into the IGM?
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v Inject UV/X-ray (10-100 eV) photons directly into the IGM?

v Inject low energy e~ /et and let them collisionally ionize the IGM?
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How can WIMP annihilations effect the Lyman-« forest?

v Inject UV/X-ray (10-100 eV) photons directly into the IGM?
v Inject low energy e~ /et and let them collisionally ionize the IGM?

v Inject relativistic e~ /e™ and let them upscatter the CMB to the
UV/X-ray band!
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How can WIMP annihilations effect the Lyman-« forest?

v Inject UV/X-ray (10-100 eV) photons directly into the IGM?
v Inject low energy e~ /et and let them collisionally ionize the IGM?
v Inject relativistic e~ /e’ and let them upscatter the CMB to the
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The model

v' Assume that thermally frozen-out WIMPs, M, = O(100) GeV,
annihilate to pairs of bb, which then produce showers of ~ O(1) GeV
e Jet.
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The model

V" Assume that thermally frozen-out WIMPs, M, = O(100) GeV,

annihilate to pairs of bb, which then produce showers of ~ O(1) GeV
e Jet.

v Wherever 7j,ss > T4if, these e~ /e™ diffusively cool and escape the
DM halo into the IGM.
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v' Assume that thermally frozen-out WIMPs, M, = O(100) GeV,
annihilate to pairs of bb, which then produce showers of ~ O(1) GeV
e Jet.

v Wherever 7j,ss > T4if, these e~ /e™ diffusively cool and escape the
DM halo into the IGM.

v They later up-scatter the CMB photons in the IGM with
Tioss ~ 1/(1 + z)* Byrs.
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The model

v' Assume that thermally frozen-out WIMPs, M, = O(100) GeV,
annihilate to pairs of bb, which then produce showers of ~ O(1) GeV
e Jet.

v Wherever 7j,ss > T4if, these e~ /e™ diffusively cool and escape the
DM halo into the IGM.

v They later up-scatter the CMB photons in the IGM with
Tioss ~ 1/(1 + z)* Byrs.

v Resulting UV and X-ray photons can potentially contribute to the
ionization state of the IGM.
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Injection spectrum

Tansu Daylan | Photoionization of the IGM by DM annihilations | Connection between Lyman-c forest and DM annihilation



Injection spectrum

e~ /e™ multiplicity (green) peaks at ~ 0.01M,, in hadronic annihilations
channels and ~ 0.1M,, in leptonic channels (Cirelli et al. 2012).
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DM annihilations
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DM annihilations

v" DM annihilation emissivity is given by,

dn dNapn R
j(F:Z,Ee)EEgm(F’Z, Ee):><Ee2 dg ><<0'V>‘7Xn2(r,2)
e e
<0'V>\7 szann 2/
= R x EZ dE. x p(F, z)
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DM annihilations

v" DM annihilation emissivity is given by,

o dN R dNanpn R
J(f,Z,Ee)EEezm(hZ,Ee):><Eez dEe x (ov)y x n(F, z)
= lov)s X E2dNa"" x p?(F, z).

M2 " e dE,

v After DM particles start clustering the spatially averaged signal is
averaged over a collection of halos,

dnN

((z, Ee))r ~ () natos(2, Ee) = /deM . d37j(r, z, E.).

Vi
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Using the CMB as a calorimeter for annihilation products
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Using the CMB as a calorimeter for annihilation products

The UV/X-ray photon emissivity is collected as the integral ICS power
radiated by the e~ /e*.

) Mpm dP;.
JV(EW,Z):/ dEe S (E, Ee,2) VE(Ee )
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Using the CMB as a calorimeter for annihilation products

The UV/X-ray photon emissivity is collected as the integral ICS power
radiated by the e~ /e*.
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The photoionizing background
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The photoionizing background

The UV/X-ray emissivity can be projected on the sky to get the intensity

C dt (1+Z)3 N — E! ’
I(E _ - d Terr (E1,2,2")
(Ey.2) 47r/z zdz (1—i—z)37 ,z)e i
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The photoionizing background

The UV/X-ray emissivity can be projected on the sky to get the intensity
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DM as an efficient photo-ionizer of the IGM
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DM as an efficient photo-ionizer of the IGM

Summary of requirements

v" The mass of the WIMP should be low (M, ~ 10 — 100 GeV).
v A high annihilation cross section, (ov) ~ 1072* — 1072 cm3/s, is

needed to achieve O(10)% contribution to the meta-galactic
ionization rate.
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DM as an efficient photo-ionizer of the IGM

Summary of requirements

v" The mass of the WIMP should be low (M, ~ 10 — 100 GeV).

v A high annihilation cross section, (ov) ~ 1072* — 1072 cm3/s, is
needed to achieve O(10)% contribution to the meta-galactic
ionization rate.

For the DM enthusiast: what can we do to make it work?
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DM as an efficient photo-ionizer of the IGM

Summary of requirements

v" The mass of the WIMP should be low (M, ~ 10 — 100 GeV).

v A high annihilation cross section, (ov) ~ 1072* — 1072 cm3/s, is
needed to achieve O(10)% contribution to the meta-galactic
ionization rate.

For the DM enthusiast: what can we do to make it work?

v" Mess up with the mean concentration-mass relation or level of
substructure around the scale radius?
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DM as an efficient photo-ionizer of the IGM

Summary of requirements

v" The mass of the WIMP should be low (M, ~ 10 — 100 GeV).

v A high annihilation cross section, (ov) ~ 1072* — 1072 cm3/s, is
needed to achieve O(10)% contribution to the meta-galactic
ionization rate.

For the DM enthusiast: what can we do to make it work?

v" Mess up with the mean concentration-mass relation or level of
substructure around the scale radius?

v Change the production history of the WIMP?
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Thermal production of WIMPs under siege
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Thermal production of WIMPs under siege

v The relic abundance of a thermally produced WIMP is set by the
annihilation cross section.

1 —26 3
Qeon = 0.25 (3 x 107%° cm /s)

{ov)
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Thermal production of WIMPs under siege

v The relic abundance of a thermally produced WIMP is set by the
annihilation cross section.

1 —26 3
Qeon = 0.25 <3 x 107%° cm /s)

{ov)

v It is UV-insensitive (passes the Occam's Razor) and well-motivated.
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Thermal production of WIMPs under siege

v The relic abundance of a thermally produced WIMP is set by the
annihilation cross section.

1 —26 3
Qeon = 0.25 <3 x 107%° cm /s)

{ov)

v It is UV-insensitive (passes the Occam's Razor) and well-motivated.

v" However CMB anisotropies require (Silvia et al. 2011)

{ov)

<2x107% cm3/s/GeV
M,

Pann = f(z)
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Thermal production of WIMPs under siege

v The relic abundance of a thermally produced WIMP is set by the
annihilation cross section.

1 —26 3
Qeon = 0.25 (3 x 1074° cm /s)

{ov)

It is UV-insensitive (passes the Occam’s Razor) and well-motivated.

ANEEN

However CMB anisotropies require (Silvia et al. 2011)

{ov)
MX

Pann = f(2) <2x107% cm3/s/GeV

v Similarly gamma-rays from stacked dwarf galaxies constrain thermal
production to M, 2 100 GeV (Fermi-LAT and DES collaborations,
2015).
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Non-thermal production of WIMPs
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Non-thermal production of WIMPs

v If a heavy species produced during inflation, W, decays
out-of-equilibrium to DM, after its thermal freeze-out, then

3x 10720 cm3/s\ Ty
Q¥fy A~ 0.25 —.
oM ( {ov) ) Tr
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Non-thermal production of WIMPs

v If a heavy species produced during inflation, W, decays
out-of-equilibrium to DM, after its thermal freeze-out, then

3x 10720 cm3/s\ Ty
Q¥fy A~ 0.25 —.
o < {ov) ) Tr

V" The reheat of the Universe follows the freeze-out (T, < T¢ ~ 100
GeV), but should preceed the BBN (Tggy ~ 1 MeV < T,).
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Non-thermal production of WIMPs

v If a heavy species produced during inflation, W, decays
out-of-equilibrium to DM, after its thermal freeze-out, then

3x 10720 cm3/s\ Ty
Q¥fy A~ 0.25 —.
o < {ov) ) Tr

V" The reheat of the Universe follows the freeze-out (T, < T¢ ~ 100
GeV), but should preceed the BBN (Tggy ~ 1 MeV < T,).

v However boosting the s-wave annihilation cross section violates the
constraints!
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p-wave annihilation
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p-wave annihilation

v In constrast p-wave annihilation
(ov)g~a+b(v?)y,b>a

is only significant around freeze-out and at low-redshift.
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p-wave annihilation

v In constrast p-wave annihilation
(ov)g~a+b(v?)y,b>a

is only significant around freeze-out and at low-redshift.
v" The emissivity becomes

oc/dl\/lgl\l\/ll y B (ov)y(r,z) x p*(r, z)

vir

Tansu Daylan | Photoionization of the IGM by DM annihilations Non-thermal p-wave annihilation 14 / 16



p-wave annihilation

v In constrast p-wave annihilation
(ov)g~a+b(v?)y,b>a

is only significant around freeze-out and at low-redshift.

v" The emissivity becomes

dN
x /dI\/IdM v B (ov)y(r,z) x p*(r, z)
v Given the DM velocity variance during the freeze-out, (v2) ~ 0.1, and
the observed velocity variance in galaxy clusters, (v2) ~ x1075, a
p-wave velocity suppression of 10~* is more than compensated by a

non-thermal production boost of T¢/T, ~ 10°.
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A potentially relevant low-redshift anomaly
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A potentially relevant low-redshift anomaly

Cosmological simulations tied to the intermediate redshift Lyman-« forest
predict a 5x larger metagalactic ionization rate at low-redshift than the
cosmic UV background synthesis models. (Kollmeier et al., 2014;
Puchwein et al., 2014)
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A potentially relevant low-redshift anomaly

Cosmological simulations tied to the intermediate redshift Lyman-« forest
predict a 5x larger metagalactic ionization rate at low-redshift than the
cosmic UV background synthesis models. (Kollmeier et al., 2014;
Puchwein et al., 2014)
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Conclusion

Tansu Daylan | Photoionization of the IGM by DM annihilations Non-thermal p-wave annihilation



Conclusion

v’ s-wave annihilations of thermal WIMPs cannot contribute to the
photoionization of the IGM at low-redshift.

Tansu Daylan | Photoionization of the IGM by DM annihilations Non-thermal p-wave annihilation 16 / 16



Conclusion

v’ s-wave annihilations of thermal WIMPs cannot contribute to the
photoionization of the IGM at low-redshift.

v p-wave annihilations of non-thermally produced DM can do better,
avoiding CMB anisotropy constraints.
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Conclusion

v’ s-wave annihilations of thermal WIMPs cannot contribute to the
photoionization of the IGM at low-redshift.

v p-wave annihilations of non-thermally produced DM can do better,
avoiding CMB anisotropy constraints.

v This scenario was initially motivated by the gamma-ray excess in the
inner galaxy (Goodenough and Hooper, 2009).
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Conclusion

v’ s-wave annihilations of thermal WIMPs cannot contribute to the
photoionization of the IGM at low-redshift.

v p-wave annihilations of non-thermally produced DM can do better,
avoiding CMB anisotropy constraints.

v This scenario was initially motivated by the gamma-ray excess in the
inner galaxy (Goodenough and Hooper, 2009).

v However this is no longer the case if DM is non-thermally produced
and is predominantly annihilating in the p-wave. (See Stephen'’s talk
on Tuesday for the other reason.)
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