Introduction	Model: nmUED	Phenomenology	Conclusion
00	o	000000000	

EXTRA DIMENSION VERSUS SUPERSYMMETRY AT THE LHC

S. Nandi

Oklahoma State University & Oklahoma Center for High Energy Physics

[Work done in collaboration with Kirtiman Ghosh and Durmus Karabacak JHEP 1409 (2014) 076 and K. Ghosh, D. Karabacak and S. Nandi (to appear)]

Talk presented at DPF 2015, University of Michigan, Ann Arbor, MI, August 4-8, 2015.

August 7, 2015

Introduction	Model: nmUED	Phenomenology	Conclusion
00	o	00000000	
Overview			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Introduction

• Universal Extra Dimension

2 Model: nmUED

Constraints on the parameters

3 Phenomenology

- Higgs Phenomenology
- Collider Phenomenology at the LHC

4 Conclusion

Introduc ●0	tion Model: nmUI o	Đ	Phenomenology 000000000	Conclusion		
Universa	I Extra Dimension					
min	imal Universal Extr	a Dimensioi	n			
	In minimal UED \Rightarrow mUED, 5D space-time is $M^4 imes S_1/Z_2$					
	• There are KK-excita	tions of every	SM particles			
KK-	parity conserved	\implies	• Can only be pair prod	uced		

• Gives Dark Matter

 $\Rightarrow Spectra depends on the cut-off scale \Lambda and <math>R^{-1}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Λ can not be too large, otherwise gauge couplings blow off.
- Spectra of KK-particles is pretty degenerate at each level

With only level-1 KK excitations, similar to compressed SUSY

Model: nmUED

Phenomenology 00000000 Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Universal Extra Dimension

Extra Dimension vs SUSY at the LHC

However, most SUSY breaking scenarios do not give such a compressed spectra

- Pair production of SUSY particles and their decay gives high p_T jets plus missing transverse energy.
 - Classic signals of SUSY
 - Will distinguish SUSY from UED

However, LHC Higgs data do not agree with mUED at the 1σ level

Need to go beyond mUED \implies non-minimal UED \implies nmUED

Introduction	Model: nmUED	Phenomenology	Conclusion

Model: nmUED

 $S = S_{bulk} + S_{BLKT}$

$$\begin{split} \mathcal{S}_{bulk} &= \int \mathrm{d}^4 x \int_{-L}^{L} \mathrm{d} y \Big[\sum_{\mathcal{A}}^{G,W,B} - \frac{1}{4} \mathcal{A}_{MN} \mathcal{A}^{MN} + \sum_{\Psi}^{Q,U,D,L,E} i \bar{\Psi} \overleftarrow{D}_{M} \Gamma^{M} \Psi - M_{\Psi} \bar{\Psi} \Psi \Big] \\ \mathcal{S}_{bdry} &= \int \mathrm{d}^4 x \int_{-L}^{L} \mathrm{d} y \Big(\sum_{\mathcal{A}}^{G,W,B} - \frac{r_{\mathcal{A}}}{4} \mathcal{A}_{\mu\nu} \mathcal{A}^{\mu\nu} + \sum_{\Psi=Q,L} i r_{\Psi} \bar{\Psi}_L D_{\mu} \gamma^{\mu} \Psi_L \\ &+ \sum_{\Psi=U,D,E} i r_{\Psi} \bar{\Psi}_R D_{\mu} \gamma^{\mu} \Psi_R \Big) \times [\delta(y-L) + \delta(y+L)]. \end{split}$$

Parameters:

Coefficients of the BLKT terms

• $r_A \implies r_g, r_W, r_B$

• $r_{\psi} \implies r_U, r_D, r_E$

• Also involve $M_{\psi} = \mu \theta(y) \Longrightarrow 5D$ fermion bulk mass.

Masses of the KK-gauge bosons and fermions are determined by solving transcendental equations

Introduction	Model: nmUED	Phenomenology	Conclusion
	•		
Constraints on the parameters			
Constraints on t	the parameters		

- $\frac{r_{\Psi}}{L} > \frac{\exp^{-2\mu L} 1}{2\mu L}$ to avoid ghosts and/or tachyons in the fermion sector.
- *r*_A/*L* > −1 to avoid ghosts and/or tachyons in the gauge sector.
- The bounds on the parameters are also obtained from the low-energy observables. [T. Flacke, K. Kong and S. C. Park, JHEP 1305, 111 (2013)]
 - KK-parity conserving interactions, \mathcal{L}_{002n}
 - $Z^{(2)}$ contribute to 4-fermi interactions
 - $r_A > 0.5L$ for $\mu L = -0.1$ and fixed R^{-1}
 - However, for $0 > \mu L > -0.03$ and $R^{-1} \approx 850$ GeV, g_{200} will be small and $M_{Z^{2n}}$ will be heavy enough to escape this bound
- EW precision test and the collider searches are insensitive to small values of μ , for example $\mu L = -0.02$

We discuss the implications of nmUED in the context of the Higgs data and multijets plus E_T searches at the 8 TeV LHC

- Parameters of the model:
 - r_{ψ} , $\Psi = Q$, U, D, L, E
 - r_A , A = G, W, B
 - $\mu \Longrightarrow$ Bulk fermion mass term
- Take universal boundary parameters for all quarks and leptons $\implies r_F$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- For gauge sector, we choose $r_g \neq r_W = r_B$
- Also choose $\mu L = -0.02$

Phenomenology

Mass spectra for level-1 KK-excitations

Figure : Level-1 gauge boson (left panel) and fermion (right panel) as a function of r/L for three different values of R^{-1} . For the level-1 fermion masses in the right panel, we consider $\mu = -0.02L$.

- Both level-1 KK-fermions and gauge bosons masses increase if we decrease r/L.

- $m_H = 125 \text{ GeV} \implies \lambda = 0.129 \text{ in the SM}$
- $\lambda \rightarrow 0$ at $Q = 10^{11} \text{ GeV} \Longrightarrow$ Vacuum instability
- For mUED, λ evolves much faster because of KK-excitations
 - $\lambda
 ightarrow$ 0 at 4-6 R^{-1}
 - For subsequent analysis, we take $\Lambda = 5R^{-1}$
- Higgs production measured in different channels at the LHC

$$\mu_i = \frac{(\sigma \times \text{BR})_i}{(\sigma \times \text{BR})_i^{\text{SM}}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $H \rightarrow gg$: Only KK-tower of top contributes
- $H \rightarrow \gamma \gamma$: KK-towers of top and W both contribute

Introduction	Model: nmUED	Phenomenology	Conclusion
		0000000	
Higgs Phenomenology			

Combined best-fit values for μ_i

[G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion and S. Kraml, PRD 88, 075008 (2013)]

$\gamma\gamma$ decay	/ channel	VV deca	y channel		
$\hat{\mu}^{ggF}$	$\hat{\mu}^{ ext{VBF}}$	$\hat{\mu}^{ggF}$ $\hat{\mu}^{VBF}$			
0.98±0.28	$1.72{\pm}0.59$	0.91±0.16	$1.01{\pm}0.49$		

Table : Combined best-fit Higgs signal strengths for different Higgs production and decay modes. Results for mUED: has only 2 parameters $\implies \Lambda$ and R^{-1}

Figure : Higgs signal strengths relative to the SM expectations: $\mu_{ggF}^{H \to \gamma\gamma}$ (left panel), $\mu_{VBF}^{H \to \gamma\gamma}$ (middle panel) and $\mu_{ggF}^{H \to VV}$ (right panel), in the context of mUED scenario as a function of R^{-1} . The combined best-fit values (from Table 1) of the abovementioned Higgs signal strengths are also presented. Can not fit data at 1σ level (see middle panel)

Introduction	Model: nmUED	Phenomenology	Conclusion
		0000000	
Higgs Phenomenology			
Results for nmU	ED		

In addition to R^{-1} and Λ , we have several additional parameters coming from the BLK terms

- r_{ψ} , $\Psi = Q$, U, D, L, E
- r_A , A = G, W, B
- $\mu \Longrightarrow$ Bulk fermion mass term
- We choose cut-off scale $\Lambda = 5R^{-1}$
- Universal r_F
- But, for gauge sector, we choose $r_g \neq r_W = r_B$
- Also choose $\mu L = -0.02$

We have scanned the parameter space (r_W, r_F) to fit the Higgs data in different channels for 2 values of R^{-1} (1.2 and 1.3 TeV)

Introduction	Model: nmUED	Phenomenology	Conclusion
		00000000	
Higgs Phenomenology			
Continued			

Figure : Scattered points in $r_W/L-r_F/L$ plane which are consistent with the combined best-fit results of $\mu_{ggF}^{H\to\gamma\gamma}$, $\mu_{VBF}^{H\to\gamma\gamma}$, $\mu_{ggF}^{H\to\gamma\gamma}$, $\mu_{ggF}^{H\to\gammaV}$ and all three together for $R^{-1} = 1.2$ TeV (left panel) and $R^{-1} = 1.3$ TeV (right panel).

All combined best-fit Higgs data is consistent with nmUED for large r_W and negative r_F

Model: nmUED

Phenomenology

Collider Phenomenology at the LHC

Collider Phenomenology at the LHC

- Use the LHC data for SUSY search and if we can reproduce the exact limits for nmUED using the allowed parameter space
- We use 8 TeV LHC data with $L=20.3~{
 m fb}^{-1}$
- Two questions:
 - Can we reproduce any SUSY signals from the level-1 KK particles using the allowed parameter space of nmUED ?
 - What limits we can put on $q^{(1)}$ and $g^{(1)}$ masses in nmUED ?

Model: nmUED

Phenomenology

Conclusion

Collider Phenomenology at the LHC

nmUED Benchmark point for multijets analysis

Benchmark Point (BP)								
R^{-1} ΛR μL r_g/L r_F/L r_W/L								
1.2 TeV 5 -0.02 -0.05 -0.42 7.4								
		Masses	in GeV					
<i>m</i> _{Q⁽¹⁾}	$m_{Q^{(1)}}$ $m_{L^{(1)}}$ $m_{G^{(1)}}$ $m_{W^{(1)\pm}}$ $m_{Z^{(1)}}$ $m_{\gamma^{(1)}}$							
1800	1800	1265	275	275	260			

- Produce q^1q^1 , g^1g^1 , q^1g^1
- Decay these using the spectra for the benchmark point
- Apply the same cuts as ATLAS multijets SUSY searches

Introduction	Model: nmUED	Phenomenology	Conclusion
		000000000	
Collider Phenomenology at the LHC			

Results: ATLAS cuts

Cuts	A (2-	jets)	B (3-	-jets)	C (4	-jets)	D		E (6-jets))
	L	М	M	Т	M	Т	(5-jets)	L	M	Т
$\not\!$					1	L60				
$p_T^{j_1} > [GeV]$					1	L30				
$p_T^{j_2} > [GeV]$						60				
$p_T^{j_3} > [GeV]$	-		60 60 60 60							
$p_T^{j_4} > [GeV]$	-		- 60 60 60							
$p_T^{j_5} > [GeV]$	-			-		-	60		60	
$p_T^{j_6} > [GeV]$	-			-		-	-		60	
$\Delta \phi(j_i, \vec{k}_T)_{min} >$	0.4 {i=	=1,2,3 if µ	$p_T^{j_3} > 40$	GeV		0.4 {i	=1,2,3}, 0.2	$p_T^{j_i} > 4$	0 GeV	
$\not \not \in_T / M_{eff}(N_j) >$	0.2	-	0.3	0.4	0.25	0.25	0.2	0.15	0.2	0.25
m _{eff} (incl.) [TeV]	1.0	1.6	1.8	2.2	1.2	2.2	1.6	1.0	1.2	1.5
σ_{BSM} [fb]	66.07	2.52	0.73	0.33	4.00	0.12	0.77	4.55	1.41	0.41

Table : Cuts used by the ATLAS collaboration to define the signal regions. $\Delta \phi(jet, \vec{\xi}_T)$ is the azimuthal separations between \vec{E}_T and the reconstructed jets. $m_{eff}(N_j)$ is defined to be the scalar sum of the transverse momenta of the leading N jets together with $\vec{\xi}_T$. However, for $m_{eff}^{incl.}$, the sum goes over all jets with $p_T > 40$ GeV. Last column corresponds to the 95% C.L. observed upper limits on the non-SM contributions σ_{BSM} .

Model: nmUED

Phenomenology

Collider Phenomenology at the LHC

Results: Cut-flow table.

Process	Supersymmetry		nmUED
	$\tilde{g}\tilde{g}$ one-step		$g^{(1)}g^{(1)}$ one-step
Point	$m_{ ilde{g}} = 1265 { m GeV}$		$m_{\sigma(1)} = 1265 \text{ GeV}$
	$m_{\tilde{\chi}_1^{\pm}} = 865 \text{ GeV}$		$m_{\tilde{W}(1)\pm}^{\circ} = 865 \text{ GeV}$
	$m_{\tilde{\chi}_{1}^{0}}^{1} = 4$	$m_{ ilde{\gamma}(1)}=$ 465 GeV	
Cuts		n %	
(E-tight)	ATLAS Appendix-C of [?]	Our Simulation	Our Simulation
0-lepton	63.5	66.1	57.3
$E_T > 160 \text{ GeV}$	55.6	57.6	54.7
$p_{T_i}^{j_1} > 130 \text{ GeV}$	55.6	57.5	54.7
$p_T^{j_2}>$ 60 GeV	55.6	57.5	54.6
$p_T^{j_3} > 60 \text{ GeV}$	55.4	57.3	51.8
$p_T^{j_4} > 60 \text{ GeV}$	53.4	55.2	41.3
$p_T^{j_5} > 60 \text{ GeV}$	46.3	47.1	27.4
$p_T^{j_6} > 60 \text{ GeV}$	31.7	31.1	15.0
$\Delta \phi(j_i, E_T), i = 1, 2, 3$	26.5	26.1	12.2
$\Delta \phi(j, E_T), p_T^j > 40 \text{ GeV}$	21.3	21.6	9.7
$E_T/m_{eff}(N_j) > 0.25$	12.0	12.7	4.7
$m_{eff}(incl.) > 1.5 \text{ TeV}$	7.9	8.3	4.5

- Our simulation agrees very well with the ATLAS simulations
- nmUED signals are pretty close to the SUSY for similar cuts

Introduction	Model: nmUED	Phenomenology	Conclusion
		00000000	
Collider Phenomenology a	at the LHC		
Results			

Figure : The exclusion limits on $m_{Q^1} - m_{g^1}$ plane from 8 TeV 20.3 inverse femtobarn integrated luminosity ATLAS data for different ATLAS defined signal regions. We have assumed fixed mass for the level-1 electroweak KK gauge bosons $(m_W^{(1)\pm} = m_{Z^{(1)}} = 275 \text{ GeV}$ and $m_W \gamma^{(1)} = 260 \text{ GeV}$).

For $m_{q^1} = m_{g^1}$, the limit is 2.1 TeV.

200

э

ヘロト 人間ト ヘヨト ヘヨト

Introduction	Model: nmUED	Phenomenology	Conclusion
00	o	00000000	
Conclusion			

- Though mUED signals are very different from the SUSY signals at the LHC, nmUED signals are not.
- With switable choice of BLK terms, we can reproduce any multijets + ∉_T signal given by SUSY in nmUED.
- If enhancement in $H \rightarrow \gamma \gamma$ persists in LHC Run 2, it is allowed in nmUED, but not in mUED.
- nmUED with the assumption $m_{q^1} = m_{g^1}$, 8 TeV LHC limit is ~ 2.1 TeV.
- Since nmUED can reproduce any SUSY signals, the production of level-2 KK excitations will be the key to distinguish between extra-dimension and supersymmetry if any signal is seen.