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Universal Extra Dimension

minimal Universal Extra Dimension

In minimal UED ⇒ mUED, 5D space-time is M4 × S1/Z2

There are KK-excitations of every SM particles

KK-parity conserved =⇒ Can only be pair produced

Gives Dark Matter

mn = n
R

=⇒
Radiative corrections
breaks mass
degeneracy.

=⇒ Spectra depends on the
cut-off scale Λ and R−1

Λ can not be too large, otherwise gauge couplings blow off.

Spectra of KK-particles is pretty degenerate at each level

With only level-1 KK excitations, similar to compressed SUSY
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Universal Extra Dimension

Extra Dimension vs SUSY at the LHC

However, most SUSY breaking scenarios do not give such a
compressed spectra

Pair production of SUSY particles and their decay gives high
pT jets plus missing transverse energy.

Classic signals of SUSY
Will distinguish SUSY from UED

However, LHC Higgs data do not agree with mUED at the 1σ level

Need to go beyond mUED =⇒ non-minimal UED =⇒ nmUED



Introduction Model: nmUED Phenomenology Conclusion

Model: nmUED

S = Sbulk + SBLKT
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× [δ(y − L) + δ(y + L)].

Parameters:

Coefficients of the BLKT terms

rA =⇒ rg , rW , rB
rψ =⇒ rU , rD , rE

Also involve Mψ = µθ(y) =⇒ 5D fermion bulk mass.

Masses of the KK-gauge bosons and fermions are determined by solving
transcendental equations
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Constraints on the parameters

Constraints on the parameters

rΨ
L
> exp−2µL

−1
2µL to avoid ghosts and/or tachyons in the

fermion sector.

rA/L > −1 to avoid ghosts and/or tachyons in the gauge
sector.

The bounds on the parameters are also obtained from the
low-energy observables. [T. Flacke, K. Kong and S. C. Park, JHEP 1305, 111 (2013)]

KK-parity conserving interactions, L002n

Z (2) contribute to 4-fermi interactions

rA > 0.5L for µL = −0.1 and fixed R
−1

However, for 0 > µL > −0.03 and R−1 ≈ 850 GeV, g200 will
be small and MZ 2n will be heavy enough to escape this bound

EW precision test and the collider searches are insensitive to small
values of µ, for example µL = −0.02
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Phenomenology

We discuss the implications of nmUED in the context of the Higgs
data and multijets plus ET/ searches at the 8 TeV LHC

Parameters of the model:

rψ, Ψ = Q, U, D, L, E

rA, A = G , W , B

µ =⇒ Bulk fermion mass term

Take universal boundary parameters for all quarks and leptons
=⇒ rF

For gauge sector, we choose rg 6= rW = rB

Also choose µL = − 0.02
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Mass spectra for level-1 KK-excitations
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Figure : Level-1 gauge boson (left panel) and fermion (right panel) as a function of r/L for three different

values of R−1. For the level-1 fermion masses in the right panel, we consider µ = −0.02L.

NOTE:

Masses of KK-excitations are very sensitive to the BLKT
parameters =⇒ Large splitting even at the tree level

Both level-1 KK-fermions and gauge bosons masses increase if
we decrease r/L.
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Higgs Phenomenology

Higgs Phenomenology

mH = 125 GeV =⇒ λ = 0.129 in the SM

λ → 0 at Q = 1011 GeV =⇒ Vacuum instability

For mUED, λ evolves much faster because of KK-excitations

λ → 0 at 4-6 R−1

For subsequent analysis, we take Λ = 5R−1

Higgs production measured in different channels at the LHC

µi =
(σ×BR)i

(σ×BR)SM
i

H → gg : Only KK-tower of top contributes

H → γγ: KK-towers of top and W both contribute
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Higgs Phenomenology

Combined best-fit values for µi

[G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion and S. Kraml, PRD 88, 075008 (2013)]

γγ decay channel VV decay channel
µ̂ggF µ̂VBF µ̂ggF µ̂VBF

0.98±0.28 1.72±0.59 0.91±0.16 1.01±0.49

Table : Combined best-fit Higgs signal strengths for different Higgs production and decay modes.

Results for mUED: has only 2 parameters =⇒ Λ and R−1
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Figure : Higgs signal strengths relative to the SM expectations: µ
H→γγ

ggF
(left panel), µ

H→γγ

VBF
(middle

panel) and µH→VV
ggF (right panel), in the context of mUED scenario as a function of R−1. The combined best-fit

values (from Table 1) of the abovementioned Higgs signal strengths are also presented.
Can not fit data at 1σ level (see middle panel)
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Higgs Phenomenology

Results for nmUED

In addition to R−1 and Λ, we have several additional parameters
coming from the BLK terms

rψ, Ψ = Q, U, D, L, E

rA, A = G , W , B

µ =⇒ Bulk fermion mass term

We choose cut-off scale Λ = 5R−1

Universal rF

But, for gauge sector, we choose rg 6= rW = rB

Also choose µL = − 0.02

We have scanned the parameter space (rW , rF ) to fit the Higgs
data in different channels for 2 values of R−1 (1.2 and 1.3 TeV)
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Higgs Phenomenology

Continued.

R-1=1.2 TeV
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R-1=1.3 TeV
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Figure : Scattered points in rW /L-rF /L plane which are consistent with the combined best-fit results of

µ
H→γγ

ggF
, µ

H→γγ

VBF
, µH→VV

ggF and all three together for R−1 = 1.2 TeV (left panel) and R−1 = 1.3 TeV (right

panel).

All combined best-fit Higgs data is consistent with nmUED for
large rW and negative rF
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Collider Phenomenology at the LHC

Collider Phenomenology at the LHC

Multijets at high pT plus large ET/ signal

Use the LHC data for SUSY search and if we can reproduce
the exact limits for nmUED using the allowed parameter space

We use 8 TeV LHC data with L = 20.3 fb
−1

SUSY limits: For mq̃ = mg̃ < 1.7 TeV is excluded from jets +
ET/ channel.

Two questions:

Can we reproduce any SUSY signals from the level-1 KK
particles using the allowed parameter space of nmUED ?
What limits we can put on q(1) and g (1) masses in nmUED ?
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Collider Phenomenology at the LHC

nmUED Benchmark point for multijets analysis

Benchmark Point (BP)

R−1 ΛR µL rg/L rF/L rW /L

1.2 TeV 5 -0.02 -0.05 -0.42 7.4

Masses in GeV

mQ(1) mL(1) mG (1) mW (1)± mZ (1) mγ(1)

1800 1800 1265 275 275 260

Produce q1q1, g1g1, q1g1

Decay these using the spectra for the benchmark point

Apply the same cuts as ATLAS multijets SUSY searches
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Collider Phenomenology at the LHC

Results: ATLAS cuts

Cuts A (2-jets) B (3-jets) C (4-jets) D E (6-jets)
L M M T M T (5-jets) L M T

ET/ > [GeV] 160

p
j1
T

> [GeV] 130

p
j2
T

> [GeV] 60

p
j3
T

> [GeV] - 60 60 60 60

p
j4
T

> [GeV] - - 60 60 60

p
j5
T

> [GeV] - - - 60 60

p
j6
T

> [GeV] - - - - 60

∆φ(ji , ~ET/ )min > 0.4 {i=1,2,3 if p
j3
T

> 40 GeV} 0.4 {i=1,2,3}, 0.2 p
ji
T

> 40 GeV

ET/ /Meff (Nj ) > 0.2 - 0.3 0.4 0.25 0.25 0.2 0.15 0.2 0.25

meff (incl.) [TeV] 1.0 1.6 1.8 2.2 1.2 2.2 1.6 1.0 1.2 1.5

σBSM [fb] 66.07 2.52 0.73 0.33 4.00 0.12 0.77 4.55 1.41 0.41

Table : Cuts used by the ATLAS collaboration to define the signal regions. ∆φ(jet, ~ET/ ) is the azimuthal

separations between ~ET/ and the reconstructed jets. meff (Nj ) is defined to be the scalar sum of the transverse

momenta of the leading N jets together with ET/ . However, for mincl.
eff , the sum goes over all jets with pT > 40

GeV. Last column corresponds to the 95% C.L. observed upper limits on the non-SM contributions σBSM .
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Collider Phenomenology at the LHC

Results: Cut-flow table.

Process Supersymmetry nmUED

g̃ g̃ one-step g (1)g (1) one-step
Point mg̃ = 1265 GeV m

g(1)
= 1265 GeV

m
χ̃
±
1

= 865 GeV m
W̃ (1)± = 865 GeV

m
χ̃
0
1
= 465 GeV m

γ̃
(1) = 465 GeV

Cuts Absolute efficiency in %
(E-tight) ATLAS Our Simulation Our Simulation

Appendix-C of [?]

0-lepton 63.5 66.1 57.3
ET/ > 160 GeV 55.6 57.6 54.7

p
j1
T

> 130 GeV 55.6 57.5 54.7

p
j2
T

> 60 GeV 55.6 57.5 54.6

p
j3
T

> 60 GeV 55.4 57.3 51.8

p
j4
T

> 60 GeV 53.4 55.2 41.3

p
j5
T

> 60 GeV 46.3 47.1 27.4

p
j6
T

> 60 GeV 31.7 31.1 15.0
∆φ(ji , ET/ ), i = 1, 2, 3 26.5 26.1 12.2

∆φ(j, ET/ ), p
j
T

> 40 GeV 21.3 21.6 9.7
ET/ /meff (Nj ) > 0.25 12.0 12.7 4.7
meff (incl.) > 1.5 TeV 7.9 8.3 4.5

Our simulation agrees very well with the ATLAS simulations

nmUED signals are pretty close to the SUSY for similar cuts
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Collider Phenomenology at the LHC

Results
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Figure : The exclusion limits on m
Q1 -mg1

plane from 8 TeV 20.3 inverse femtobarn integrated luminosity

ATLAS data for different ATLAS defined signal regions. We have assumed fixed mass for the level-1 electroweak

KK gauge bosons (m
(1)±
W

= m
Z(1) = 275 GeV and mW γ(1) = 260 GeV).

For mq1 = mg1 , the limit is 2.1 TeV.
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Conclusion

Though mUED signals are very different from the SUSY
signals at the LHC, nmUED signals are not.

With switable choice of BLK terms, we can reproduce any
multijets + ET/ signal given by SUSY in nmUED.

If enhancement in H → γγ persists in LHC Run 2, it is
allowed in nmUED, but not in mUED.

nmUED with the assumption mq1 = mg1 , 8 TeV LHC limit is
∼ 2.1 TeV.

Since nmUED can reproduce any SUSY signals, the
production of level-2 KK excitations will be the key to
distinguish between extra-dimension and supersymmetry if any
signal is seen.
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