Bound on the variation in the fine structure constant α implied by Oklo data

Leila Hamdan

Department of Physics, Kuwait University

Undergraduate project (with Dr. E. D. Davis): published as PhysRevC.92.014319 [arXiv: 1503.06011]

A 3 b

Outline

What is Oklo? Why is Oklo of interest?

How to extract bound on $\Delta \alpha \equiv \alpha_{\rm Oklo} - \alpha_{\rm now}$ from Oklo?

- Damour-Dyson (DD) method
- Corrections to the DD method

What?

 Natural nuclear fission reactor in Gabon (equatorial West Africa), discovered in 1972 (by CEA, France)

 Operated 1.8 to 2 Gyr ago (redshift z ~ 0.14) like a pulsed light water reactor (Meshik et al., PRL.93.182302)

Why?

- Geochemical data \longrightarrow thermal neutron capture cross-sections σ about 2 Gyr ago
- Any change in σ from present-day values
 - \longrightarrow change Δ_r in resonance energy E_r
 - \rightarrow change in α over last 2 * 10⁹ yr (Shlyakhter, Nature.264.340)

$n+{}^{149}Sm ightarrow {}^{150}Sm^{*}$ (capture of most interest: ${\it E_r}=$ 97.3 meV)

- Small change in $E_r \longrightarrow$ large change in n capture ($\propto \phi \cdot \sigma$) \longrightarrow would be seen in Sm Oklo data
- Δ_r from Oklo data consistent with 0 \longrightarrow very small bounds on Δ_r

$\Delta_r(\text{meV})$	Reference
4±16	Fujii et al., NPB.573.377
7.2±9.4	Gould et al., PRC.74.024607
1.9±4.5	Onegin et al., ModPhysLettA.27.1250232

Image: A matrix

$\Delta \alpha$ from Δ_r for ¹⁵⁰Sm

Method based on (Damour & Dyson, NuclPhysB.480.37)

• Neglect of dependence on quark parameters (Justify in PhysRevC.92.014319)

$$|\Delta_r| \ge |\mathbf{k}| \frac{|\Delta lpha|}{lpha_{\sf now}}$$
 where $\mathbf{k} \equiv lpha \frac{dE_r}{dlpha}$

Lower bound on |k| enough to set upper bound on $|\Delta \alpha|$

• Exact upper bound on k (negative \rightarrow lower bound on |k|)

$$k \leq \int V_r(\rho_{150^*} - \rho_{149}) d^3r$$

Need, in principle, charge densities ρ_{150^*}, ρ_{149} to evaluate

• V_r = electrostatic potential of excited compound nucleus ¹⁵⁰Sm

Uncontrolled approximations in DD bound k^{DD} on k

• Estimate V_r assuming charge is sphere of uniform charge density

• Also replace $\langle r^2 \rangle$ for compound nucleus by $\langle r^2 \rangle$ for ground state

$$k \leq k^{DD} \equiv -\frac{(Z e)^2}{2R^3} (\langle r^2 \rangle_{150} - \langle r^2 \rangle_{149})$$

Hamdan (Kuwait University)

Value of k^{DD} for ¹⁵⁰Sm (a numerical correction!)

- *R* is equivalent rms radius of charge distribution: $R = \sqrt{\frac{5}{3}} \langle r^2 \rangle_{\text{Expt}}$
- Damour & Dyson use *R* = 8.11 fm (→ *k^{DD}* = −1.1 ± 0.1 MeV)
 Much too big!
- With measured rms radius of ground state $(\longrightarrow R = 6.50 \pm 0.20 \text{ MeV})$, find for ¹⁵⁰Sm

$$k^{DD} \equiv -rac{(Z e)^2}{2R^3} (\langle r^2
angle_{150} - \langle r^2
angle_{149}) = -2.51 \pm 0.20 \,\mathrm{MeV}$$

3 physics corrections

- Can identify excitation & external electrostatic potential corrections
- Also use more realistic charge densities deformation correction

Need to estimate β and *a* for ¹⁵⁰Sm^{*} (increase by a few percent)

Hamdan (Kuwait University)

Results for our 3 corrections & the net correction

- Use 4 different models of nuclear densities
- Plot results for reasonable range of $\Delta\beta \equiv \beta_* \beta_{gs}$ (0 < $\Delta\beta$ < 0.05 β_{gs})

Mean and scatter of estimates of net correction $\longrightarrow k^{corr} = 0.33 \pm 0.16 \text{ MeV}$

Hamdan (Kuwait L	Iniversity)

Lower bound on |k|

$$k \le k_B \equiv k^{DD} + k^{corr} < 0 \longrightarrow |k| \ge -k_B = 2.18 \pm 0.26 \,\text{MeV}$$

• Upper bound on $|\Delta \alpha|$

Use
$$\frac{|\Delta \alpha|}{\alpha_{now}} \le \frac{|\Delta_r|}{|k|} \le \frac{|\Delta_r|}{-k_B}$$
 & gaussian character of $\zeta \equiv \frac{\Delta_r}{-k_B}$

• 95% C.L. bound on $|\Delta \alpha|$

$$rac{|\Delta lpha|}{lpha_{
m now}} \leq 1.1 imes 10^{-8}$$

< E

Example: runaway dilaton model (of string cosmology)

• Relation between $\Delta \alpha(z)$ & current "speed" Φ'_0 of dilaton

• Limit on $|\Phi'_0|$ from Oklo 95% C.L. bound on $\Delta \alpha$ at $z \simeq 0.14$

$$\frac{\Delta \alpha}{\alpha} \simeq -\frac{\alpha_{\text{had}}}{40} \Phi_0' \ln(1+z) \qquad \frac{|\alpha_{\text{had}}|=10^{-4}}{z \simeq 0.14} \qquad \left| \Phi_0' \right| \lesssim 0.03$$

(4) (3) (4) (4) (4)

Undetectable difference in Δα(z) for ΛCDM & dilaton models (z < 5)

Conclusions

Revised Damour-Dyson estimate works for orders of magnitude

• New bound on
$$\Delta \alpha$$
 at 95% C.L.: $\frac{|\Delta \alpha|}{\alpha_{now}} < 1.1 \times 10^{-8}$

For z < 5, α(z) does not distinguish dilaton model from ΛCDM

Conclusions

• Revised Damour-Dyson estimate works for orders of magnitude

• New bound on
$$\Delta \alpha$$
 at 95% C.L.: $\frac{|\Delta \alpha|}{\alpha_{now}} < 1.1 \times 10^{-8}$

• For z < 5, $\alpha(z)$ does not distinguish dilaton model from Λ CDM

Thank you for listening!