

Search for Monotop Production in Leptonic Decays of Top Quarks at $\sqrt{s=8}$ TeV Using the ATLAS Detector

Andrew Chegwidden

Michigan State University

DPF 2015

- Cut Based Analysis
 - Signal Models
 - Analysis Strategy
 - Kinematics
 - Expected / Observed Limits
- BDT Analysis
 - Input Variables
 - BDT Parameters
 - Expected Limits
- Future Plans

Cut Based Analysis

- Search for BSM production of top quark + Missing Transverse Energy (MET)
- Effective model:

Chegwidden, MSU

- J. Andrea, B. Fuks, F. Maltoni (<u>Phys. Rev. D85 (2011) 074025</u>
- G. Cacciapaglia, A. Deandrea, B. Fuks (<u>arXiv:1407.7529</u>)
- Two benchmark models:
 - S1: scalar resonance decaying into one top quark and a neutral fermion (baryon number violating)
 - S4: associated production of a top quark with a neutral spin-1 particle (FCNC)
- Right-handed couplings only; required to respect electroweak gauge structure
- f_{met} (S1) and v_{met} (S4) can be considered dark matter candidates

4

54R

- Search for BSM production of top quark + Missing Transverse Energy (MET)
- Effective model:

Chegwidden, MSU

- J. Andrea, B. Fuks, F. Maltoni (<u>Phys. Rev. D85 (2011) 074025</u>
- G. Cacciapaglia, A. Deandrea, B. Fuks (<u>arXiv:1407.7529</u>)
- Two benchmark models:
 - S1: scalar resonance decaying into one top quark and a neutral fermion (baryon number violating)
 - S4: associated production of a top quark with a neutral spin-1 particle (FCNC)
- Right-handed couplings only; required to respect electroweak gauge structure
- f_{met} (S1) and v_{met} (S4) can be considered dark matter candidates

5

- Search for BSM production of top quark + Missing Transverse Energy (MET)
- Effective model:
 - J. Andrea, B. Fuks, F. Maltoni (<u>Phys. Rev. D85 (2011) 074025</u>
 - G. Cacciapaglia, A. Deandrea, B. Fuks (<u>arXiv:1407.7529</u>)
- Two benchmark models:
 - S1: scalar resonance decaying into one top quark and a neutral fermion (baryon number violating)
 - S4: associated production of a top quark with a neutral spin-1 particle (FCNC)
- Right-handed couplings only; required to respect electroweak gauge structure
- f_{met} (S1) and v_{met} (S4) can be considered dark matter candidates

- Search for BSM production of top quark + Missing Transverse Energy (MET)
- Effective model:
 - J. Andrea, B. Fuks, F. Maltoni (<u>Phys. Rev. D85 (2011) 074025</u>
 - G. Cacciapaglia, A. Deandrea, B. Fuks (<u>arXiv:1407.7529</u>)
- Two benchmark models:
 - S1: scalar resonance decaying into one top quark and a neutral fermion (baryon number violating)
 - S4: associated production of a top quark with a neutral spin-1 particle (FCNC)
- Right-handed couplings only; required to respect electroweak gauge structure
- f_{met} (S1) and v_{met} (S4) can be considered dark matter candidates

54_R

- Search for BSM production of top quark + Missing Transverse Energy (MET)
- Effective model:
 - J. Andrea, B. Fuks, F. Maltoni (<u>Phys. Rev. D85 (2011) 074025</u>
 - G. Cacciapaglia, A. Deandrea, B. Fuks (<u>arXiv:1407.7529</u>)
- Two benchmark models:
 - S1: scalar resonance decaying into one top quark and a neutral fermion (baryon number violating)
 - S4: associated production of a top quark with a neutral spin-1 particle (FCNC)
- Right-handed couplings only; required to respect electroweak gauge structure
- f_{met} (S1) and v_{met} (S4) can be considered dark matter candidates

 $S4_R$

- Leptonic top decay topology:
 - 1 lepton, 1 b-jet, and Missing Transverse Energy (MET)
- Multijet rejection:
 - p_T(I) > 30 GeV, MET > 35GeV, MET+M_T(I,MET) > 60 GeV
- Control / Signal regions:
 - optimization done with $\Delta \phi(I,b)$ and $M_T(I,MET)$

Analysis Strategy

multijet/W+jets CR

CR1

CR2 CR3 (2 b-jets) SRI

Δφ (I,b)I

π

1.8

1.4

1.2

5

SRII

- 1 lepton, 1 b-jet, and Missing Transverse Energy (MET)
- Multijet rejection:
 - p_T(I) > 30 GeV, MET > 35GeV, MET+M_T(I,MET) > 60 GeV
- Control / Signal regions:
 - optimization done with $\Delta \phi(I,b)$ and $M_T(I,MET)$

Analysis Strategy

SRII

kinematically similar to signal region

CR2

CR3 (2 b-jets) SRI

|Δφ (I,b)I

π

1.8

1.4

1.2

CR1

- Leptonic top decay topology:
 - 1 lepton, 1 b-jet, and Missing Transverse Energy (MET)
- Multijet rejection:
 - p_T(I) > 30 GeV, MET > 35GeV, MET+M_T(I,MET) > 60 GeV
- Control / Signal regions:
 - optimization done with $\Delta \phi(I,b)$ and $M_T(I,MET)$

- Leptonic top decay topology:
 - 1 lepton, 1 b-jet, and Missing Transverse Energy (MET)
- Multijet rejection:
 - p_T(I) > 30 GeV, MET > 35GeV, MET+M_T(I,MET) > 60 GeV
- Control / Signal regions:
 - optimization done with $\Delta \varphi(I,b)$ and $M_T(I,MET)$

Eur. Phys. Jour. C 75 (2015) 79 (DOI: 10.1140/epjc/s10052-014-3233-4)

- Leptonic top decay topology:
 - 1 lepton, 1 b-jet, and Missing Transverse Energy (MET)
- Multijet rejection:
 - p_T(I) > 30 GeV, MET > 35GeV, MET+M_T(I,MET) > 60 GeV
- Control / Signal regions:
 - optimization done with $\Delta \phi(I,b)$ and $M_T(I,MET)$

Eur. Phys. Jour. C 75 (2015) 79 (DOI: 10.1140/epjc/s10052-014-3233-4)

Control Region Plots

good agreement in control regions

Eur. Phys. Jour. C 75 (2015) 79 (DOI: 10.1140/epjc/s10052-014-3233-4)

Signal Region Plots

Eur. Phys. Jour. C 75 (2015) 79 (DOI: 10.1140/epjc/s10052-014-3233-4)

Eur. Phys. Jour. C 75 (2015) 79 (DOI: 10.1140/epjc/s10052-014-3233-4)

Observed and Expected Limits (Non-Resonant)

Eur. Phys. Jour. C 75 (2015) 79 (DOI: 10.1140/epjc/s10052-014-3233-4)

MULTIVARIATE ANALYSIS (BDT)

BDT Input Variables - Separation Power

MET > 35 GeV

MET > 70 GeV

MET > 140 GeV

Background Rejection vs Signal Efficiency

AS

Parameter	Type/Value		
Method	Gradient Boost		
nTrees	500		
nCuts	30		
MaxDepth	4		
Shrinkage	0.6		
MinNodeSize	5%		
% trained events	50%		
%tested events	50%		

Cut-Based

BDT-Based

m⊤(lep,MET) > 250 GeV && |Δφ(lep,b) | < 1.4

BDTResponse > 0.953

13 TeV Extrapolation

Cut Based

BDT

Theory (LO) a

---- Expected 95% CL limi

Theory (LO) a

±1σ

±20

ATLAS Work in Progress

Non-resonant model

√s = 13 TeV, 5 fb⁻¹, e⁺/μ⁺

10

 10^{2}

10-2

10 fb⁻¹

884GeV 800 900 1000 100 200 300 400 500 600 700 m_{vmet} [GeV] 5 fb⁻¹

1 fb⁻¹

- Able to improve the limits with an MVA
- Might be statistically limited at 8TeV
- Looking forward to extending the analysis at 13 TeV
- Possible hadronic analysis to improve limits

BACKUP SLIDES

	SRI	SRII	
Resonant signal, $m(S) = 500 \text{ GeV}, m(f_{\text{met}}) = 0 \text{ GeV}$	$253 \pm 5 \pm 34$	_	
Resonant signal, $m(S) = 500 \text{ GeV}, m(f_{\text{met}}) = 100 \text{ GeV}$	$186 \pm 4 \pm 24$	_	
Non-resonant signal, $m(v_{met}) = 0$ GeV	_	$2430 \pm 130 \pm 210$	
Non-resonant signal, $m(v_{\text{met}}) = 1000 \text{ GeV}$	_	$8.4 \pm 0.1 \pm 0.8$	
$t\overline{t}$	$190 \pm 7 \pm 40$	$94 \pm 5 \pm 19$	
Single-top s -channel	< 0.05	< 0.05	
Single-top t -channel	< 0.10	< 0.10	
Single-top Wt	$19 \pm 4 \pm 14$	$10 \pm 3 \pm 11$	
W+light-quarks	$2 \pm 2 \pm 4$	$3 \pm 3 \pm 4$	
$W{+}bb$	$10 \pm 3 \pm 5$	$9 \pm 3 \pm 7$	
W+cc	$5 \pm 3 \pm 3$	$2 \pm 7 \pm 2$	
$W{+}c$	$12 \pm 5 \pm 8$	$4 \pm 2 \pm 4$	
Diboson	$1.3 \pm 0.6 \pm 0.7$	$1.0 \pm 0.5 \pm 0.5$	
Z+jets	< 4	< 4	
Multijet	< 0.6	< 1.3	
Total background	$240 \pm 10 \pm 50$	$124 \pm 11 \pm 27$	
Data	238	133	

Eur. Phys. Jour. C 75 (2015) 79 (DOI: 10.1140/epjc/s10052-014-3233-4)

Phys. Rev. D 86, 034008 (2012) arxiv:1109.5963 [hep-ph]

- Multijets are estimated with a data-driven matrix method
- Remaining backgrounds are normalized to theoretical cross-sections and modeled with MC simulation

Background	Generator	Xsec Order
ttbar	Powheg	NNLO+NNLL
single top	Powheg(s-chan,Wt) AcerMC (t-chan)	NNLO
W + jets	Alpgen+Pythia	NLO
Z + jets	Alpgen+Pythia	NLO
Diboson	Herwig	NLO

Systematics

	SRI Resonant signal Background		SRII Non-resonant signal	Background
	$m(f_{\rm met}) = 100 {\rm GeV}$		$m(v_{\rm met}) = 700 {\rm GeV}$	
Electron				
Trigger, reconstruction, identification	1.3	1.1	1.3	1.3
Energy scale and resolution	1.1	2.3	0.9	3.1
Muon				
Trigger, reconstruction, identification	1.0	1.1	1.1	1.2
Energy scale and resolution	0.4	1.8	0.3	4.1
Jet				
Energy scale	1.6	9.6	4.5	10.0
Energy resolution	1.9	2.1	3.0	0.9
Reconstruction	0.5	0.3	0.2	2.6
Vertex fraction	2.7	4.7	3.1	6.1
b-tagging and mis-tagging	3.5	4.7	4.3	4.8
$E_{\rm T}^{\rm miss}$ soft terms	0.4	1.5	0.4	4.6
Acceptance				
▶ PDF	11.2	5.6	4.0	6.2
• $t\bar{t}$ generator	—	11.4	_	5.6
Wt generator	—	3.3	_	5.3
Wt diagram removal scheme	—	4.1	_	6.4
$t\bar{t}$ ISR/FSR	_	5.3	_	8.5
Cross-sections				
$t\bar{t}$	—	4.5	_	4.3
Wt	—	0.5	_	0.5
Diboson	_	0.1	_	0.2
W + light	_	0.2	_	0.7
W + hf	_	3.4	_	4.2
Luminosity	2.8	2.8	2.8	2.8
Total systematics	12.7	19.7	9.2	21.0
Statistics	2.0	1.8	1.8	9.2
Total	12.9	20.3	9.49	22.9

• BR[V $\rightarrow\chi\chi$] = 1 for monotop and < 1 for same-sign top analysis

