

 $B^0_s
ightarrow \phi \mu^+ \mu^-$ at LHCb DPF, Ann Arbor, Michigan

Michael Kolpin on behalf of the LHCb collaboration

Ruprecht-Karls-Universität Heidelberg, Germany

August 4, 2015

- 2 Candidate selection
- ③ Branching fraction
- 4 Angular analysis

Introduction •00 Candidate selection

Branching fraction

Angular analysis

Conclusion O

The LHCb experiment

- Single-arm forward spectrometer
- High performance in the forward region
- Large heavy flavour program
 - $\sim 10^{12} b\overline{b}$ pairs/year • $\sim 10^{13} c\overline{c}$ pairs/year
- Excellent momentum resolution of 0.4 – 0.6% allows for very precise analyses
- Strong boost leads to exceptional decay time resolution

[LHCb-CONF-2015-002]

- Flavour changing neutral currents forbidden in SM at tree-level
- However, allowed in loop processes: penguin decays
- Sensitive to New Physics entering in loop, very small branching fraction prediction allows observation
- Analyses done depending on dimuon invariant mass squared q^2
- I Significant deviation from SM predictions observed in $B^0 o {\cal K}^{*0} \mu^+ \mu^-$

Introduction	Candidate selection	Branching fraction	Angular analysis 00000	Conclusion O
<u>инср</u>		$B^0_s o \phi \mu^+ \mu^-$		×

Second highest statistics penguin decay at LHCb

Tree-level decay $B_s^0 o J/\psi (o \mu^+ \mu^-) \phi (o K^+ K^-)$ used as control and normalisation mode

- Previous analysis of 1 fb⁻¹ published in 2013 [LHCb-PAPER-2013-017]
- Discrepancy to SM in differential branching fraction
- This talk: analysis of 3 fb⁻¹ including full angular analysis [LHCb-PAPER-2015-023]

Introduction 000	Candidate selection ●○	Branching fraction	Angular analysis	Conclusion O
rhcp		Selection		<u>به</u>

- Cut based selection:
 - ▶ Loose cut on B_s^0 mass, tight (±12 MeV/ c^2) on ϕ mass
 - Particle identification
 - Reconstruction quality criteria
 - Explicit misidentification vetoes
- Multivariate analysis to reduce combinatorial background, trained data-driven using control mode

000	0000000	OOOOO	O
LHCb FHCp	Selection		×

Control channel yield: 62033 ± 260

Most background sources negligible Non-negligible peaking backgrounds:

expected

▶ $B^0 \rightarrow K^{*0}\mu^+\mu^-$: 1.7 ± 0.4 events expected ▶ $\Lambda_h^0 \rightarrow \Lambda(1520)\mu^+\mu^-$: 2.0 ± 0.8 events

 q^2 binning removes tree-level charmonium decays

 $\begin{array}{c} c_{1}\\ c_{2}\\ c_{3}\\ c_{4}\\ c_$

Signal	l yield:	432	±	24

q^2 bin	range [${ m GeV}^2/c^4$]
1	0.1 - 2.0
2	2.0 - 5.0
3	5.0 - 8.0
4	11.0 - 12.5
5	15.0 - 17.0
6	17.0 - 19.0
W1	1.0 - 6.0
W2	15.0 - 19.0

Branching fraction ratio calculated via

$$\frac{1}{\mathcal{B}(B^0_s \to J/\psi \, \phi)} \cdot \frac{\mathrm{d}\mathcal{B}(B^0_s \to \phi \mu^+ \mu^-)}{\mathrm{d}q^2} = \frac{\mathcal{B}(J/\psi \to \mu^+ \mu^-)}{q^2_{max} - q^2_{min}} \cdot \frac{\mathrm{N}_{\phi \mu^+ \mu^-}}{\mathrm{N}_{J/\psi \phi}} \cdot \frac{\varepsilon_{\mathrm{tot}}^{J/\psi \phi}}{\varepsilon_{\mathrm{tot}}^{\phi \mu^+ \mu^-}}$$

• $\mathcal{B}(J/\psi \rightarrow \mu^+ \ \mu^-)$ from PDG

I Yields determined from unbinned extended maximum likelihood fits to invariant B_s^0 mass

- Sum of two Crystal Ball shapes used as signal model (fixed for signal from control channel fit)
- Exponential function as background model

Relative efficiencies $\varepsilon_{tot}^{J/\psi\phi}/\varepsilon_{tot}^{\phi\mu^+\mu^-}$ determined from simulation

Branching fraction ratio calculated via

$$\frac{1}{\mathcal{B}(B^0_s \to J/\psi \, \phi)} \cdot \frac{\mathrm{d}\mathcal{B}(B^0_s \to \phi \mu^+ \mu^-)}{\mathrm{d}q^2} = \frac{\mathcal{B}(J/\psi \to \mu^+ \mu^-)}{q^2_{max} - q^2_{min}} \cdot \frac{\mathrm{N}_{\phi \mu^+ \mu^-}}{\mathrm{N}_{J/\psi \phi}} \cdot \frac{\varepsilon_{\mathrm{tot}}^{J/\psi \phi}}{\varepsilon_{\mathrm{tot}}^{\phi \mu^+ \mu^-}}$$

•
$$\mathcal{B}(J\!/\psi
ightarrow \mu^+ \ \mu^-)$$
 from PDG

Vields determined from unbinned extended maximum likelihood fits to invariant B_s^0 mass

- Sum of two Crystal Ball shapes used as signal model (fixed for signal from control channel fit)
- Exponential function as background model

Relative efficiencies $\varepsilon_{tot}^{J/\psi\phi}/\varepsilon_{tot}^{\phi\mu^+\mu^-}$ determined from simulation

Branching fraction ratio calculated via

$$\frac{1}{\mathcal{B}(B^0_s \to J/\psi \, \phi)} \cdot \frac{\mathrm{d}\mathcal{B}(B^0_s \to \phi \mu^+ \mu^-)}{\mathrm{d}q^2} = \frac{\mathcal{B}(J/\psi \to \mu^+ \mu^-)}{q^2_{max} - q^2_{min}} \cdot \frac{\mathrm{N}_{\phi \mu^+ \mu^-}}{\mathrm{N}_{J/\psi \phi}} \cdot \frac{\varepsilon_{\mathrm{tot}}^{J/\psi \phi}}{\varepsilon_{\mathrm{tot}}^{\phi \mu^+ \mu^-}}$$

•
$$\mathcal{B}(J\!/\psi
ightarrow \mu^+ \ \mu^-)$$
 from PDG

Vields determined from unbinned extended maximum likelihood fits to invariant B_s^0 mass

- Sum of two Crystal Ball shapes used as signal model (fixed for signal from control channel fit)
- Exponential function as background model

Relative efficiencies $\varepsilon_{tot}^{J/\psi\phi}/\varepsilon_{tot}^{\phi\mu^+\mu^-}$ determined from simulation

M. Kolpin $B_s^0 \rightarrow \phi \mu^+ \mu^-$ at LHCb

 $m(K^+K^-\mu^+\mu^-)$ [MeV/c²]

 $m(K^+K^-\mu^+\mu^-)$ [MeV/c²]

- Determined from corrected $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow \phi \mu^+ \mu^-$ simulations
- Corrected data-driven to account for data-simulation differences
- Total efficiency for both modes are composed as:

 $\varepsilon_{\rm tot} = \varepsilon_{\rm det} \cdot \varepsilon_{\rm rec/det} \cdot \varepsilon_{\rm sel/rec} \cdot \varepsilon_{\rm trg/sel}$

Efficiency dependent on the q² bin for the signal mode
Determined separately for 2011 and 2012, to account for different conditions
Combined according to data composition

Introd	uction
000	

Candidate selection

Branching fraction

Angular analysis

Conclusion 0

Systematics: Branching fraction ratio

Systematic uncertainties $[10^{-5} \text{ GeV}^{-2} c^4]$ on the branching fraction ratio $\mathrm{d}\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)/\mathcal{B}(B_s^0 \to J/\psi \phi)\mathrm{d}q^2$ per bin of q^2 [GeV²/ c^4].

Source	[0.1, 2]	[2, 5]	[5, 8]	[11, 12.5]	[15, 17]	[17, 19]	[1, 6]	[15, 19]
Simulation corr.	0.01	0.01	0.01	0.01	0.05	0.04	0.00	0.04
Angular model	0.04	0.00	0.01	0.00	0.01	0.06	0.00	0.01
Efficiency ratio	0.06	0.03	0.03	0.06	0.06	0.07	0.02	0.04
Signal mass model	0.02	0.01	0.03	0.03	0.03	0.00	0.05	0.05
Bkg. mass model	0.02	0.02	0.02	0.02	0.03	0.05	0.01	0.06
Time acceptance	0.09	0.04	0.05	0.07	0.07	0.06	0.04	0.06
${\cal B}(J\!/\psi ightarrow\mu^+\mu^-)$	0.03	0.01	0.02	0.02	0.02	0.02	0.01	0.02
Peaking bkg.	0.03	0.02	0.02	0.10	0.02	0.01	0.02	0.01
Quadratic sum	0.13	0.06	0.07	0.14	0.11	0.13	0.07	0.12
Stat. uncertainty	$^{+0.68}_{-0.64}$	$+0.39 \\ -0.37$	$^{+0.41}_{-0.39}$	$^{+0.64}_{-0.61}$	$^{+0.53}_{-0.50}$	+0.53 -0.50	$+0.30 \\ -0.29$	+0.37 -0.35

- Systematics dominated by efficiency ratio uncertainty and decay time acceptance effects
- This is both tied to the simulation sample used
- However, all systematics small compared to statistical uncertainties

luction	Candidate selection	Branching fraction	Angular analysis 00000	Conclusion O
cb	Re	esults: branching	fraction	<u>به</u>
	q^2 bin [GeV ² c^{-4}] $\frac{\mathrm{d}}{\mathcal{B}(r)}$	$\frac{B(B_s^- \to \phi \mu \mu)}{B_s^0 \to J/\psi \phi) \mathrm{d}q^2} \left[10^{-5} \mathrm{GeV}^{-2} c^4 \right]$	$\frac{\mathrm{d}\mathcal{B}(B_{s}^{*}\rightarrow\phi\mu^{+}\mu^{-})}{\mathrm{d}q^{2}} \left[10^{-8}\mathrm{GeV}^{-2}c^{4}\right]$	
	$0.1 < q^2 < 2.0$	$5.44^{+0.68}_{-0.64}\pm 0.13$	$5.85^{+0.73}_{-0.69}\pm 0.14\pm 0.44$	
	$2.0 < q^2 < 5.0$	$2.38^{+0.39}_{-0.37}\pm0.06$	$2.56^{+0.42}_{-0.39}\pm0.06\pm0.19$	
	$5.0 < q^2 < 8.0$	$2.98^{+0.41}_{-0.39}\pm0.07$	$3.21^{+0.44}_{-0.42}\pm 0.08\pm 0.24$	
	$11.0 < q^2 < 12.5$	$4.37^{+0.64}_{-0.61}\pm0.14$	$4.71^{+0.69}_{-0.65}\pm0.15\pm0.36$	
	$15.0 < q^2 < 17.0$	$4.20^{+0.53}_{-0.50}\pm0.11$	$4.51^{+0.57}_{-0.54}\pm0.12\pm0.34$	
	$17.0 < q^2 < 19.0$	$3.68^{+0.53}_{-0.50}\pm 0.13$	$3.96^{+0.57}_{-0.54}\pm 0.14\pm 0.30$	
	$1.0 < q^2 < 6.0$	$2.40^{+0.30}_{-0.29}\pm0.07$	$2.58^{+0.33}_{-0.31}\pm0.08\pm0.19$	
	$15.0 < q^2 < 19.0$	$3.75^{+0.37}_{-0.35}\pm 0.12$	$4.04^{+0.39}_{-0.38}\pm 0.13\pm 0.30$	

Extrapolation to full q^2 range yields:

$$\frac{\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)}{\mathcal{B}(B_s^0 \to J/\psi \phi)} = (7.40^{+0.42}_{-0.40 \text{ stat.}} \pm 0.16_{\text{sys.}} \pm 0.21_{\text{extrapol.}}) \cdot 10^{-4}$$
$$\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-) = (7.97^{+0.45}_{-0.43 \text{ stat.}} \pm 0.18_{\text{sys.}} \pm 0.23_{\text{extrapol.}} \pm 0.60_{J/\psi \phi}) \cdot 10^{-7}$$

M. Kolpin $\ B^0_s
ightarrow \phi \mu^+ \mu^-$ at LHCb

LH

- SM predictions from Altmannshofer/Straub [arXiv:1411.3161]
- Confirmed $\mathcal B$ to be significantly smaller than SM expectations in low q^2 region

5

Deviation of 3.5σ in $1.0 - 6.0 \,\mathrm{GeV}^2/c^4$ bin

M. Kolpin $B_c^0 \rightarrow \phi \mu^+ \mu^-$ at LHCb

10

15

 $q^2 \,[{\rm GeV}^2/c^4]$

Introduction 000	Candidate selection	Branching fraction	Angular analysis •0000	Conclusion O
LHCb FHCp		Angular analysis		×

Fit performed three-dimensional in $\cos \theta_I$, $\cos \theta_K$ and Φ

Access to eight observables:

- ▶ CP-averages F_L , $S_{3,4,7}$
- ► CP-asymmetries A_{5,6,8,9}

Angular acceptances derived from simulation, parametrised by Legendre-polynomials

Introduction 000	Candidate selection	Branching fraction	Angular analysis 00000	Conclusion O
rucp		Angular analysis		۶. K

Angular distributions modelled three-dimensional:

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^3\Gamma}{\mathrm{d}\cos\theta_I\,\mathrm{d}\cos\theta_K\,\mathrm{d}\Phi} = \frac{9}{32\pi} \left[\frac{3}{4}(1-F_\mathrm{L})\sin^2\theta_K + F_\mathrm{L}\cos^2\theta_K + \frac{1}{4}(1-F_\mathrm{L})\sin^2\theta_K\cos2\theta_I - F_\mathrm{L}\cos^2\theta_K\cos2\theta_I + S_3\sin^2\theta_K\sin^2\theta_I\cos2\Phi + S_4\sin2\theta_K\sin2\theta_I\cos\Phi + A_5\sin2\theta_K\sin2\theta_I\cos\Phi + A_5\sin2\theta_K\sin\theta_I\cos\Phi + A_5\sin2\theta_K\sin\theta_I\cos\Phi + A_5\sin2\theta_K\sin\theta_I\sin\Phi + A_9\sin^2\theta_K\sin^2\theta_I\sin\Phi + A_9\sin^2\theta_K\sin^2\theta_I\sin2\Phi\right]$$

Background description from B_s^0 mass sidebands, using second order polynomials

Introduction 000 Candidate selection

Branching fraction

Angular analysis

Conclusion O

Systematics: Angular analysis

	FL	<i>S</i> ₃	<i>S</i> ₄	A_5	A ₆	S7	A ₈	A ₉
MC statistics	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001
MC corrections	0.002	0.001	0.001	0.000	0.001	0.000	0.001	0.000
data-MC diff.	0.003	0.000	0.001	0.000	0.000	0.000	0.000	0.000
acc. q^2 dependence	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bkg parameterization	0.024	0.003	0.002	0.000	0.002	0.000	0.000	0.000
Bkg statistics	0.007	0.004	0.004	0.003	0.010	0.002	0.003	0.004
S-wave	0.008	0.000	0.002	0.002	0.001	0.001	0.001	0.001
Peaking bkg	0.001	0.001	0.000	0.002	0.001	0.002	0.001	0.002
Quadratic sum	0.027	0.006	0.005	0.004	0.010	0.003	0.004	0.005
Stat. uncertainty	$^{+0.09}_{-0.08}$	$^{+0.12}_{-0.15}$	$^{+0.14}_{-0.15}$	$^{+0.14}_{-0.14}$	$^{+0.14}_{-0.13}$	$^{+0.12}_{-0.11}$	$^{+0.15}_{-0.17}$	$^{+0.13}_{-0.13}$

 $1.0 < q^2 < 6.0 \, {
m GeV}^2/c^4$

- Most systematics related to angular acceptance
- *F_L* dominated by background parametrisation
- Background statistics dominant uncertainty for most other observables
- All systematics small compared to statistical uncertainties

Introduction 000	Candidate selection	Branching fraction	Angular analysis	Conclusion •
LHCb THCp		Conclusion		<u>به</u>

- Deviation in branching fraction for low q^2 confirmed
- \blacksquare This fits well into deviations observed in $B^0 o {\cal K}^{*0} \mu^+ \mu^-$
- Reasons for these deviations are being discussed in the theory community (underestimated charmonium loops ↔ New Physics in Wilson coefficients)
- Most precise branching fraction measurement for this channel so far:

$$\mathcal{B}(B^0_s o \phi \mu^+ \mu^-) = (7.97^{+0.45}_{-0.43 ext{ stat.}} \pm 0.18_{ ext{sys.}} \pm 0.23_{ ext{extrapol.}} \pm 0.60_{J/\psi \, \phi}) \cdot 10^{-7}$$

Angular observables show good agreement with SM expectations within their uncertainties

Backup slides

Angular fit projections

Feldman-Cousins scans

Relative efficiencies

q^2	$arepsilon_{ m tot}^{J/\psi\phi}/arepsilon_{ m tot}^{\phi\mu^+\mu^-}$ 2011	$arepsilon_{ m tot}^{J/\psi\phi}/arepsilon_{ m tot}^{\phi\mu^+\mu^-}$ 2012	$arepsilon_{ m tot}^{J/\psi\phi}/arepsilon_{ m tot}^{\phi\mu^+\mu^-}$ combined
0.1 - 2.0	1.260 ± 0.015	1.264 ± 0.018	1.263 ± 0.015
2.0 - 5.0	1.204 ± 0.015	1.268 ± 0.019	1.247 ± 0.015
5.0 - 8.0	1.084 ± 0.013	1.145 ± 0.015	1.125 ± 0.013
11.0-12.5	0.963 ± 0.014	0.974 ± 0.016	0.970 ± 0.013
15.0-17.0	1.064 ± 0.015	1.045 ± 0.017	1.051 ± 0.014
17.0-19.0	1.449 ± 0.031	1.398 ± 0.035	1.414 ± 0.027
1.0 - 6.0	1.194 ± 0.012	1.257 ± 0.015	1.236 ± 0.013
15.0-19.0	1.171 ± 0.014	1.145 ± 0.016	1.153 ± 0.014

Results: angular analysis

q^2 bin [GeV ² c^{-4}]	$F_{ m L}$	S_3	S_4	S_7
$0.1 < q^2 < 2.0$	$0.20^{+0.09}_{-0.08}\pm 0.02$	$-0.05^{+0.13}_{-0.13}\pm0.01$	$0.27^{+0.27}_{-0.20}\pm0.01$	$0.04^{+0.12}_{-0.12}\pm 0.00$
$2.0 < q^2 < 5.0$	$0.68^{+0.16}_{-0.13}\pm0.03$	$-0.06^{+0.19}_{-0.22}\pm0.01$	$-0.47^{+0.28}_{-0.19}\pm0.01$	$-0.03^{+0.19}_{-0.23}\pm0.01$
$5.0 < q^2 < 8.0$	$0.54^{+0.10}_{-0.09}\pm0.02$	$-0.10^{+0.18}_{-0.24}\pm0.01$	$-0.10^{+0.16}_{-0.15}\pm 0.01$	$0.04^{+0.16}_{-0.20}\pm 0.01$
$11.0 < q^2 < 12.5$	$0.29^{+0.13}_{-0.12}\pm 0.04$	$-0.19^{+0.20}_{-0.25}\pm0.01$	$-0.47^{+0.20}_{-0.30}\pm0.01$	$0.00^{+0.16}_{-0.17}\pm 0.01$
$15.0 < q^2 < 17.0$	$0.23^{+0.09}_{-0.08}\pm0.02$	$-0.06^{+0.17}_{-0.16}\pm0.01$	$-0.03^{+0.15}_{-0.15}\pm0.01$	$0.12^{+0.16}_{-0.13}\pm 0.01$
$17.0 < q^2 < 19.0$	$0.40^{+0.13}_{-0.15}\pm0.02$	$-0.07^{+0.23}_{-0.25}\pm0.02$	$-0.39^{+0.24}_{-0.22}\pm0.02$	$0.20^{+0.29}_{-0.21}\pm0.01$
$1.0 < q^2 < 6.0$	$0.63^{+0.09}_{-0.08}\pm0.03$	$-0.02^{+0.12}_{-0.15}\pm0.01$	$-0.19^{+0.14}_{-0.15}\pm0.01$	$-0.03^{+0.14}_{-0.14}\pm0.00$
$15.0 < q^2 < 19.0$	$0.29^{+0.07}_{-0.06}\pm0.02$	$-0.09^{+0.11}_{-0.11}\pm0.01$	$-0.14^{+0.11}_{-0.11}\pm 0.01$	$0.13^{+0.11}_{-0.11}\pm0.01$
q^2 bin [GeV $^2c^{-4}$]	A ₅	A ₆	A ₈	A ₉
$q^2 ext{ bin } [ext{GeV}^2 c^{-4}]$ $0.1 < q^2 < 2.0$	$\frac{A_5}{-0.02^{+0.13}_{-0.13}\pm0.00}$	$\frac{A_6}{-0.19^{+0.15}_{-0.15}\pm0.01}$	$\frac{A_8}{0.10^{+0.14}_{-0.14}\pm0.00}$	$\frac{A_9}{0.03^{+0.14}_{-0.14}\pm0.01}$
q^2 bin [GeV ² c ⁻⁴] 0.1 < q^2 < 2.0 2.0 < q^2 < 5.0	$\begin{array}{c} A_5 \\ -0.02 \substack{+0.13 \\ -0.13} \pm 0.00 \\ 0.09 \substack{+0.26 \\ -0.23} \pm 0.01 \end{array}$	$\begin{array}{c} A_6 \\ -0.19\substack{+0.15 \\ -0.15 \pm 0.01 \\ 0.09\substack{+0.19 \\ -0.18 \pm 0.02 \end{array}}$	$\begin{array}{c} & A_8 \\ \hline 0.10^{+0.14}_{-0.14} \pm 0.00 \\ -0.19^{+0.28}_{-0.21} \pm 0.01 \end{array}$	$\begin{array}{c} A_9 \\ 0.03 \substack{+0.14 \\ -0.14} \pm 0.01 \\ -0.13 \substack{+0.23 \\ -0.25} \pm 0.01 \end{array}$
$\frac{q^2 \text{ bin } [\mathrm{GeV}^2 c^{-4}]}{0.1 < q^2 < 2.0} \\ 2.0 < q^2 < 5.0 \\ 5.0 < q^2 < 8.0 \\ \end{array}$	$\begin{array}{c} A_5 \\ -0.02 \substack{+0.13 \\ -0.13 \\ 0.09 \substack{+0.26 \\ -0.23 \\ -0.23 \\ 0.04 \substack{+0.17 \\ -0.16 \\ 0.01 \end{array}} \pm 0.01 \end{array}$	$\begin{array}{c} A_6 \\ \hline -0.19\substack{+0.15 \\ -0.15 \ \pm \ 0.01 \ } \\ 0.09\substack{+0.19 \\ -0.18 \ \pm \ 0.02 \ } \\ -0.01\substack{+0.14 \\ -0.12 \ \pm \ 0.01 \ } \end{array}$	$\begin{array}{c} & A_8 \\ 0.10^{+0.14}_{-0.14} \pm 0.00 \\ -0.19^{+0.28}_{-0.21} \pm 0.01 \\ -0.12^{+0.17}_{-0.19} \pm 0.01 \end{array}$	$\begin{array}{c} A_9 \\ 0.03 \substack{+0.14 \\ -0.14} \pm 0.01 \\ -0.13 \substack{+0.23 \\ -0.25} \pm 0.01 \\ -0.03 \substack{+0.17 \\ -0.16} \pm 0.01 \end{array}$
$\frac{q^2 \text{ bin } [\text{ GeV}^2 c^{-4}]}{0.1 < q^2 < 2.0}$ $2.0 < q^2 < 5.0$ $5.0 < q^2 < 8.0$ $11.0 < q^2 < 12.5$	$\begin{array}{c} A_5 \\ -0.02 \substack{+0.13 \\ -0.13} \pm 0.00 \\ 0.09 \substack{+0.26 \\ -0.23} \pm 0.01 \\ 0.04 \substack{+0.17 \\ -0.16} \pm 0.01 \\ 0.08 \substack{+0.24 \\ -0.26} \pm 0.01 \end{array}$	$\begin{array}{c} & A_6 \\ \hline -0.19^{+0.15}_{-0.15} \pm 0.01 \\ 0.09^{+0.19}_{-0.18} \pm 0.02 \\ -0.01^{+0.14}_{-0.12} \pm 0.01 \\ -0.16^{+0.16}_{-0.18} \pm 0.01 \end{array}$	$\begin{array}{c} & A_8 \\ \hline 0.10 \substack{+0.14 \\ -0.14 } \pm 0.00 \\ -0.19 \substack{+0.28 \\ -0.21 } \pm 0.01 \\ -0.12 \substack{+0.17 \\ -0.19 } \pm 0.01 \\ 0.01 \substack{+0.15 \\ -0.15 } \pm 0.01 \end{array}$	$\begin{array}{c} A_9 \\ 0.03 \substack{+0.14 \\ -0.14 \\ -0.25 \\ -0.25 \\ -0.03 \substack{+0.17 \\ -0.25 \\ -0.01 \\ -0.03 \substack{+0.17 \\ -0.16 \\ -0.02 \substack{+0.16 \\ -0.01 \\ -0.01 \\ -0.01 \\ -0.01 \\ \end{array}} $
$\begin{array}{c} q^2 \ \text{bin} \ [\ \text{GeV}^2 c^{-4}] \\ \hline 0.1 < q^2 < 2.0 \\ 2.0 < q^2 < 5.0 \\ 5.0 < q^2 < 8.0 \\ 11.0 < q^2 < 12.5 \\ 15.0 < q^2 < 17.0 \end{array}$	$\begin{array}{c} A_5 \\ -0.02 \substack{+0.13 \\ -0.13} \pm 0.00 \\ 0.09 \substack{+0.26 \\ -0.23} \pm 0.01 \\ 0.04 \substack{+0.17 \\ -0.16} \pm 0.01 \\ 0.08 \substack{+0.24 \\ -0.26} \pm 0.01 \\ 0.02 \substack{+0.12 \\ -0.13} \pm 0.01 \end{array}$	$\begin{array}{c} A_6 \\ -0.19^{+0.15} \pm 0.01 \\ 0.09^{+0.19} \pm 0.02 \\ -0.01^{+0.19} \pm 0.01 \\ -0.01^{+0.12} \pm 0.01 \\ -0.16^{+0.16} \pm 0.01 \\ 0.01^{+0.12} \pm 0.01 \end{array}$	$\begin{array}{c} & A_8 \\ 0.10 \substack{+0.14 \\ -0.14 } \pm 0.00 \\ -0.19 \substack{+0.28 \\ -0.21 } \pm 0.01 \\ -0.12 \substack{+0.17 \\ -0.17 } \pm 0.01 \\ 0.01 \substack{+0.15 \\ -0.15 } \pm 0.01 \\ 0.08 \substack{+0.16 \\ -0.18 } \pm 0.01 \end{array}$	$\begin{array}{c} A_9 \\ 0.03 \substack{+0.14 \\ -0.14} \pm 0.01 \\ -0.13 \substack{+0.23 \\ -0.25} \pm 0.01 \\ -0.03 \substack{+0.17 \\ -0.16} \pm 0.01 \\ -0.02 \substack{+0.16 \\ -0.16} \pm 0.01 \\ 0.21 \substack{+0.18 \\ -0.12} \pm 0.01 \end{array}$
$\begin{array}{c} q^2 \ \text{bin} \ [\ {\rm GeV}^2 c^{-4}] \\ \hline 0.1 < q^2 < 2.0 \\ 2.0 < q^2 < 5.0 \\ 5.0 < q^2 < 8.0 \\ 11.0 < q^2 < 12.5 \\ 15.0 < q^2 < 17.0 \\ 17.0 < q^2 < 19.0 \end{array}$	$\begin{array}{c} A_5 \\ -0.02 \substack{+0.13 \\ -0.13} \pm 0.00 \\ 0.09 \substack{+0.26 \\ -0.23} \pm 0.01 \\ 0.04 \substack{+0.17 \\ -0.16} \pm 0.01 \\ 0.08 \substack{+0.24 \\ -0.26} \pm 0.01 \\ 0.02 \substack{+0.12 \\ -0.13} \pm 0.01 \\ 0.13 \substack{+0.28 \\ -0.28} \pm 0.01 \end{array}$	$\begin{array}{c} & A_6 \\ \hline & -0.19^{+0.15} \pm 0.01 \\ & 0.09^{+0.19} \pm 0.02 \\ & -0.01^{+0.19} \pm 0.01 \\ & -0.01^{+0.16} \pm 0.01 \\ & -0.16^{+0.16} \pm 0.01 \\ & 0.01^{+0.12} \pm 0.01 \\ & -0.04^{+0.18} \pm 0.01 \end{array}$	$\begin{array}{c} & A_8 \\ 0.10 \substack{+0.14 \\ -0.14 } \pm 0.00 \\ -0.19 \substack{+0.28 \\ -0.21 } \pm 0.01 \\ -0.12 \substack{+0.17 \\ -0.19 } \pm 0.01 \\ 0.01 \substack{+0.15 \\ -0.15 } \pm 0.01 \\ 0.08 \substack{+0.16 \\ -0.18 } \pm 0.01 \\ -0.16 \substack{+0.23 \\ -0.29 } \pm 0.01 \end{array}$	$\begin{array}{c} & A_9 \\ \hline 0.03 \substack{+0.14 \\ -0.14 \\ 0.23 \\ -0.25 \\ 0.16 \\ -0.02 \\ -0.16 \\ 0.16 \\ 0.01 \\ -0.02 \substack{+0.16 \\ -0.16 \\ -0.12 \\ -0.12 \\ -0.12 \\ 0.01 \\ -0.02 \substack{+0.17 \\ -0.12 \\ -0.19 \\ -0.01 \\ 0.01 \\ -0.02 \\ -0.19 \\ 0.01 \\ \end{array}$
$\begin{array}{c} q^2 \ \text{bin} \ [\ {\rm GeV}^2 c^{-4}] \\ \hline 0.1 < q^2 < 2.0 \\ 2.0 < q^2 < 5.0 \\ 5.0 < q^2 < 8.0 \\ 11.0 < q^2 < 12.5 \\ 15.0 < q^2 < 12.5 \\ 15.0 < q^2 < 17.0 \\ 17.0 < q^2 < 19.0 \\ \hline 1.0 < q^2 < 6.0 \end{array}$	$\begin{array}{c} A_5 \\ -0.02 \substack{+0.13 \\ -0.13} \pm 0.00 \\ 0.09 \substack{+0.26 \\ -0.26} \pm 0.01 \\ 0.04 \substack{+0.17 \\ -0.16} \pm 0.01 \\ 0.08 \substack{+0.24 \\ -0.26} \pm 0.01 \\ 0.02 \substack{+0.12 \\ -0.13} \pm 0.01 \\ 0.13 \substack{+0.28 \\ -0.28} \pm 0.01 \\ 0.20 \substack{+0.14 \\ -0.13} \pm 0.00 \end{array}$	$\begin{array}{c} A_6 \\ \hline -0.19^{+0.15} \pm 0.01 \\ 0.09^{+0.19} \pm 0.02 \\ -0.01^{+0.19} \pm 0.02 \\ -0.01^{+0.14} \pm 0.01 \\ -0.16^{+0.16} \pm 0.01 \\ 0.01^{+0.12} \pm 0.01 \\ -0.04^{+0.18} \pm 0.01 \\ -0.08^{+0.12} \pm 0.01 \\ \hline \end{array}$	$\begin{array}{c} & A_8 \\ \hline 0.10 \substack{+0.14 \\ -0.14 \\ -0.28 \\ -0.21 \\ \pm 0.01 \\ -0.12 \substack{+0.28 \\ -0.21 \\ \pm 0.01 \\ -0.12 \substack{+0.17 \\ -0.15 \\ \pm 0.01 \\ -0.15 \\ \pm 0.01 \\ -0.16 \substack{+0.16 \\ \pm 0.01 \\ -0.16 \substack{+0.23 \\ -0.23 \\ \pm 0.01 \\ -0.00 \substack{+0.15 \\ -0.17 \\ \pm 0.00 \end{array}}$	$\begin{array}{c} & A_9 \\ \hline 0.03 {}^{+0.14}_{-0.14} \pm 0.01 \\ -0.13 {}^{+0.23}_{-0.25} \pm 0.01 \\ -0.03 {}^{+0.17}_{-0.16} \pm 0.01 \\ -0.02 {}^{+0.16}_{-0.16} \pm 0.01 \\ 0.21 {}^{+0.18}_{-0.12} \pm 0.01 \\ -0.02 {}^{+0.17}_{-0.12} \pm 0.01 \\ -0.02 {}^{+0.17}_{-0.13} \pm 0.01 \end{array}$

Angular fit projections

Feldman-Cousins scans

Angular fit projections

Angular fit projections

Feldman-Cousins scans

Angular fit projections

Angular fit projections

Feldman-Cousins scans

Angular fit projections

Relative efficiencies

Angular fit projections

Feldman-Cousins scans

Angular fit projections

FC scans: F_L

FC scans: A_8

