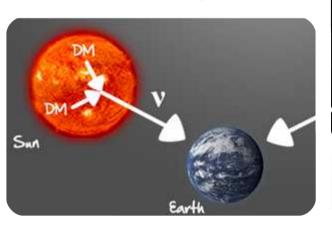
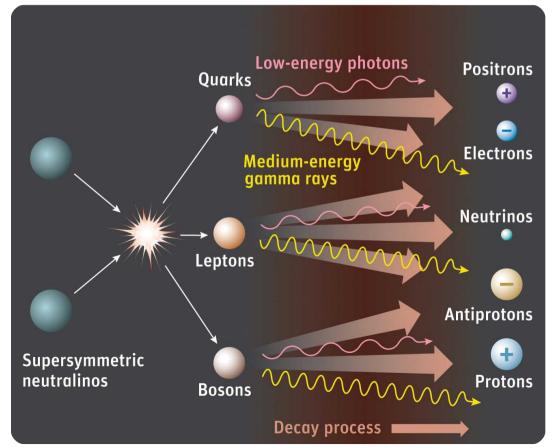

# Indirect searches for dark matter particles with the Super-Kamiokande detector



Meeting of the American Physical Society, Division of Particles and Fields, 4-8 VIII 2015


UPER

### Indirect dark matter detection


- Search for the products of WIMP annihilation or decay

- Antimatter
- Photons









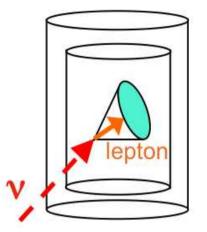
Produced v's provide very good information about:

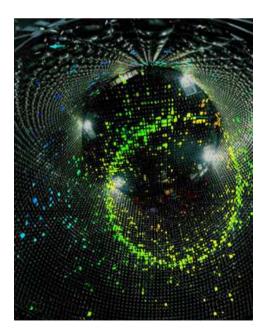
- source position
- generated energy spectra



## Super-Kamiokande Water Cherenkov detector

- 50 000 tons of water (22.5 000 ton FV)
- located in Mozumi mine, 1 km underground
- ID ~12 000 PMTs, OD ~2 000 PMTs
- far detector for T2K experiment



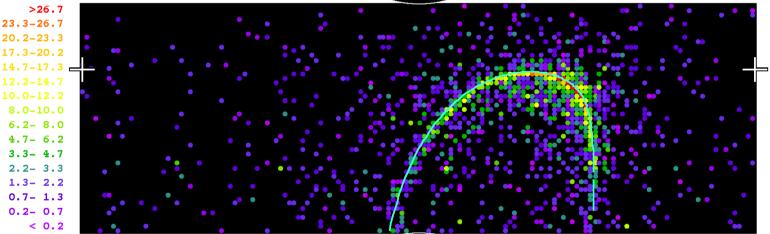





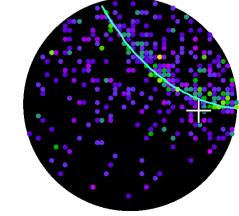

**Detector** measures solar, atmospheric, cosmic and accelerator neutrinos

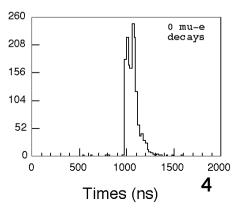
#### Neutrino detection at Super-Kamiokande



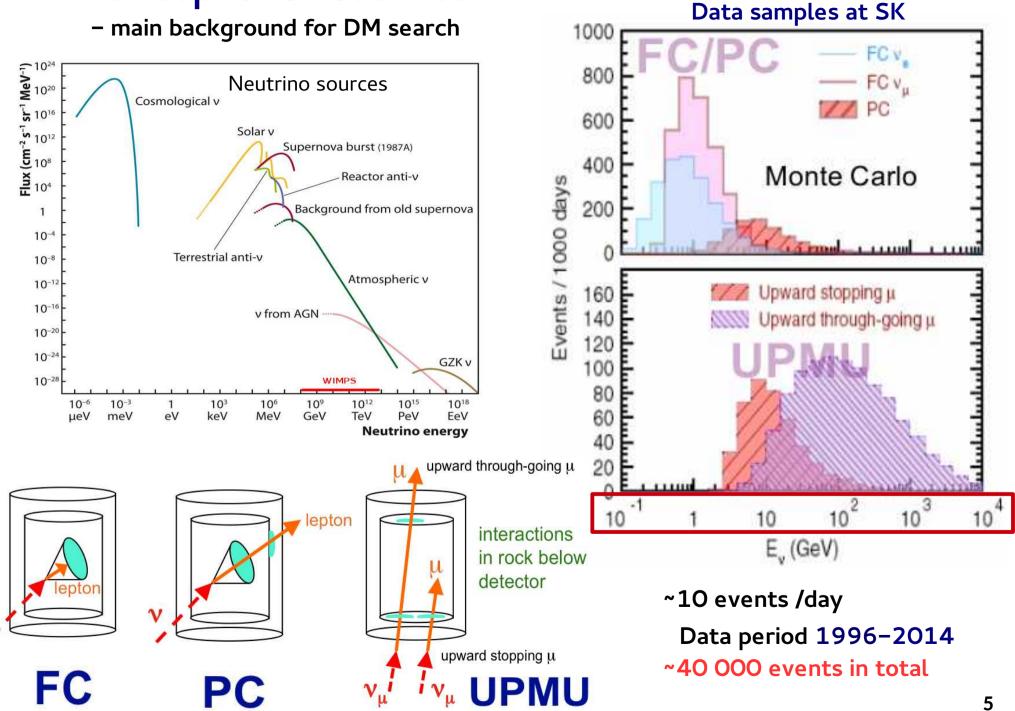



#### **Super-Kamiokande IV**


T2K Beam Run 33 Spill 822275 Run 66778 Sub 585 Event 134229437 10-05-12:21:03:22 T2K beam dt = 1902.2 ns Inner: 1601 hits, 3681 pe Outer: 2 hits, 2 pe Trigger: 0x8000007 D\_wall: 614.4 cm e-like, p = 381.8 MeV/c


#### Charge(pe)

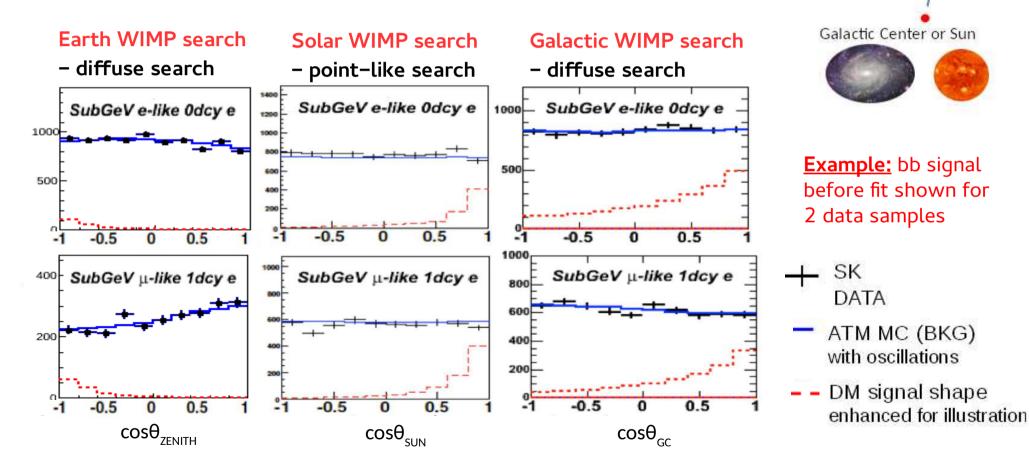





Detected Cherenkov light allow to reconstruct energy, direction and flavor of produced lepton






### **Atmospheric neutrinos**



## Dark matter searches at SK

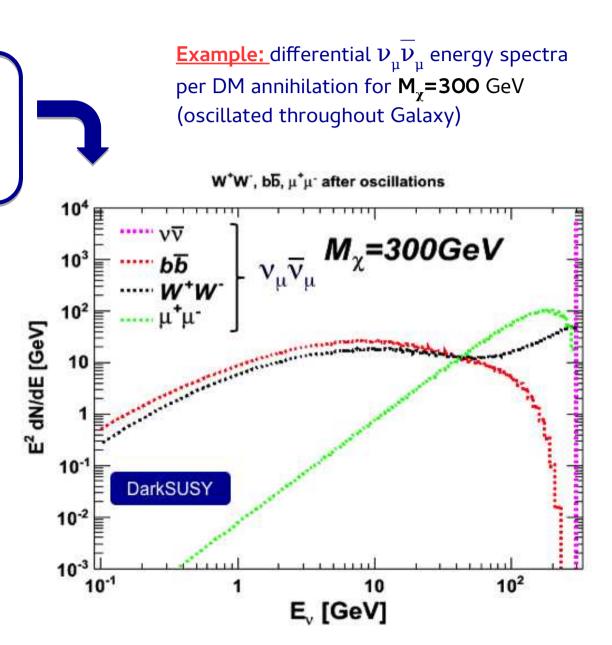
Search for excess of neutrinos from the Earth/Sun/Milky Way as compared to atmospheric neutrino background

FIT: for each tested WIMP mass, find the configuration of
 ATM υ's + DM signal that would match DATA the best



 Analysis is performed in the coordinate system in which expected signal is easy to distinguish from the atmospheric background Detector

lepton direction  $\theta_{GC}$  or  $\theta_{SUN}$ 


## Analysis steps

Simulate DM signal before detection → DarkSUSY & WimpSim

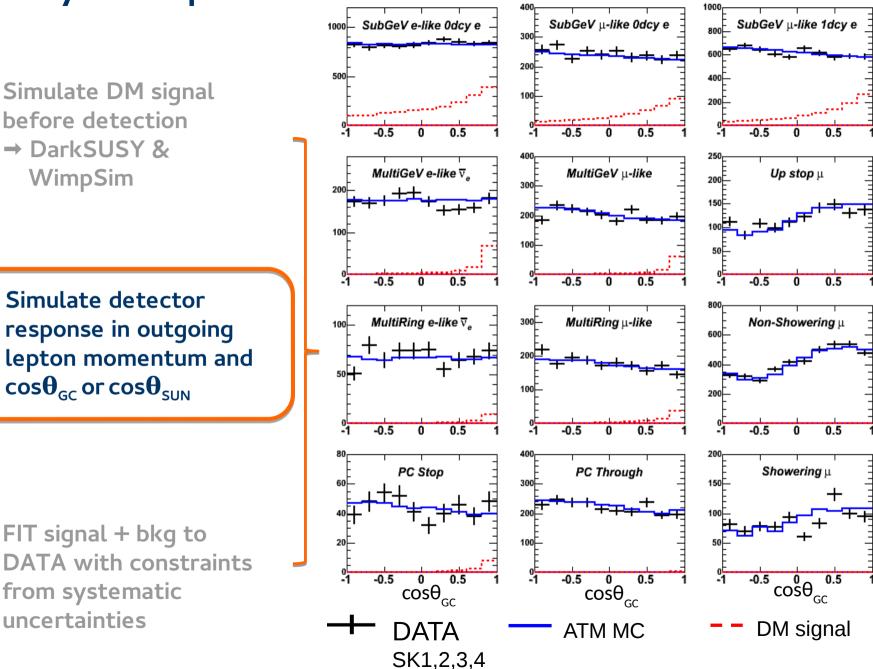
P. Gondolo et al., JCAP 07, 008 (2004) M. Blennow et al., arXiv: 0709.3898 (2008)



Simulate detector response in outgoing lepton momentum and  $\cos\theta_{GC}$  or  $\cos\theta_{SUN}$ 






FIT signal + bkg to DATA with constraints from systematic uncertainties Analysis steps

1

2

3

#### **Example:** 5 GeV WIMPs from GC, bb annihilation channel



 $\rightarrow$  proportions of the signal in various samples are reflected **8** 

## Analysis steps

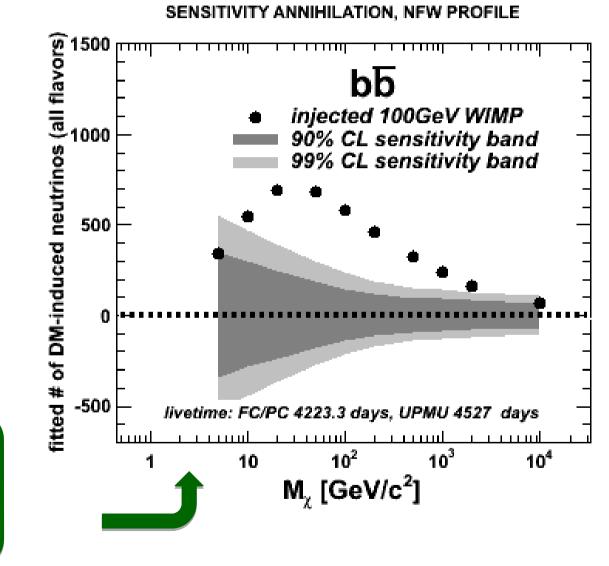


Simulate DM signal before detection → DarkSUSY &

WimpSim



3

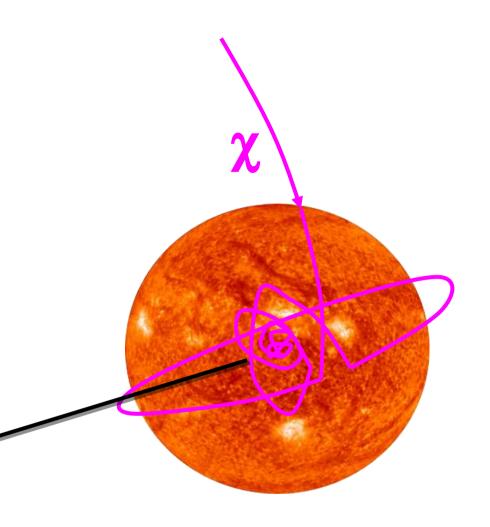

Simulate detector response in outgoing lepton momentum and  $\cos\theta_{GC}$  or  $\cos\theta_{SUN}$ 

FIT signal + bkg to

from systematic

uncertainties

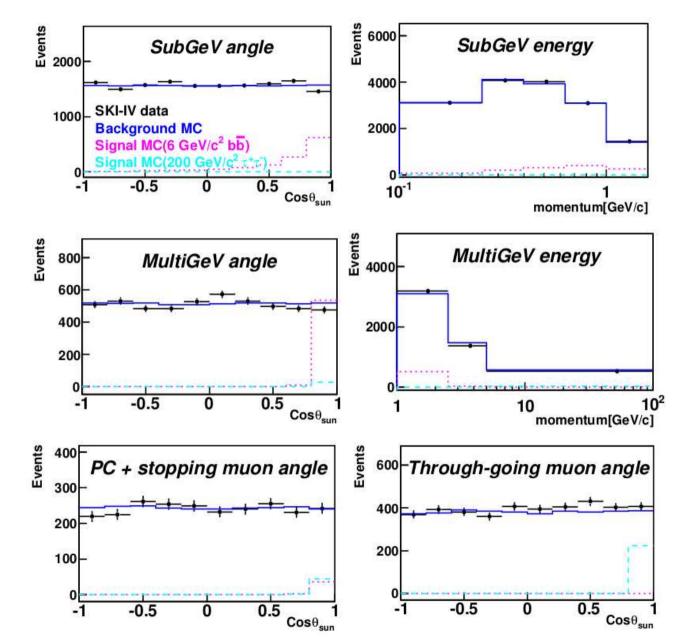
**DATA** with constraints




#### Example: Injected 100 GeV WIMP as 1.5% of BKG

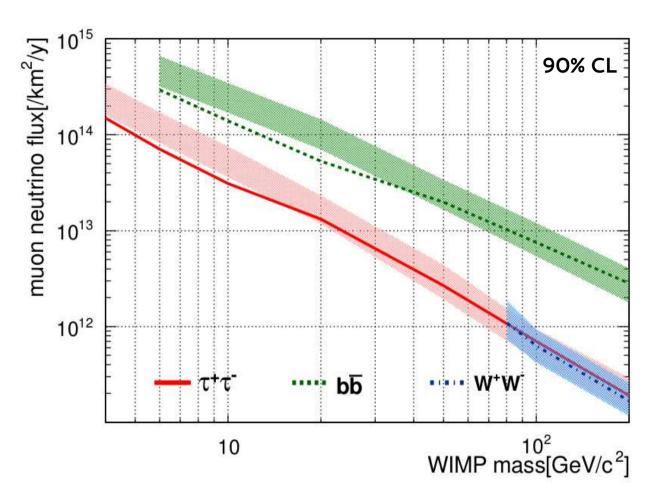
## Solar WIMP search

- DM particles passing through the Sun can elastically scatter with a nucleus and lose energy
- WIMP density increases in the core, leading to DM annihilation until equilibrium is achieved:
   capture rate = annihilation rate
- Scattering cross section σ<sub>x</sub> n can be constrain and compare with results from direct DM detection more: G.Wikström, J.Edsjö JCAP 04, 009 (2009)


detector



related HOT TOPICS: low M<sub>x</sub> positive signal by CoGeNT, Cresst, DAMA

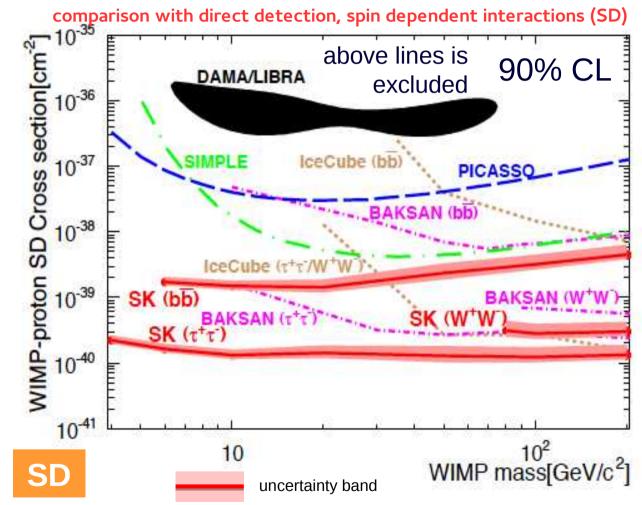

## Solar WIMP search — fit results

- FIT based on lepton mom. & cosθ<sub>SUN</sub> distributions,
  3903 days of SK data used
- No excess of ν 's from the SUN as compared to atm bkg is observed
- 90% CL upper limit on total integrated muon-neutrino flux from WIMP annihilations in the Sun for τ<sup>+</sup>τ<sup>-</sup>, bb and W<sup>+</sup>W<sup>-</sup> channels
- 90% CL upper limit on
  WIMP–nucleon scattering cross section σ<sub>x</sub>n



## Solar WIMP search – muon neutrino flux

- FIT based on lepton mom. & cosθ<sub>suN</sub> distributions,
  3903 days of SK data used
- No excess of ν 's from the SUN as compared to atm bkg is observed
- 90% CL upper limit on total integrated muon-neutrino flux from WIMP annihilations in the Sun for τ<sup>+</sup>τ<sup>-</sup>, bb and W<sup>+</sup>W<sup>-</sup> channels
- 90% CL upper limit on WIMP-nucleon scattering cross section o<sub>x</sub>n



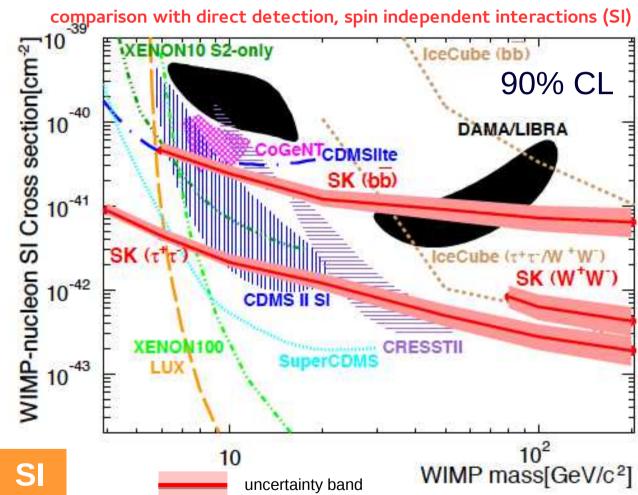

The shadowed regions show  $1\sigma$  bands of the sensitivity study results

#### Solar WIMP search – WIMP-proton SD cross section

 $\rightarrow$  axial vector interaction in which WIMPs couple to the nuclear spin

- FIT based on lepton mom. & cosθ<sub>suN</sub> distributions,
  3903 days of SK data used
- No excess of ν 's from the SUN as compared to atm bkg is observed
- 90% CL upper limit on total integrated muon-neutrino flux from WIMP annihilations in the Sun for T<sup>+</sup>T<sup>-</sup>, bb and W<sup>+</sup>W<sup>-</sup> channels
- 90% CL upper limit on WIMP-nucleon scattering cross section σ<sub>x</sub>n
- $\rightarrow$  DAMA region excluded




uncertainty bands to take account uncertainties in the capture rate for the  $b\overline{b},\,W^+W^-$  and  $\tau^+\tau^-$  channels

Recently published: K.Choi et al., Phys. Rev. Lett. 114, 141301 (2015)

#### Solar WIMP search – WIMP-nucleon SI cross section

 $\rightarrow$  scalar interaction in which WIMPs couple to the nucleus mass

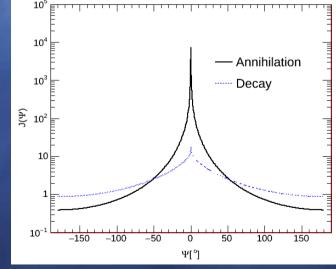
- FIT based on lepton mom. & cosθ<sub>sun</sub> distributions,
  3903 days of SK data used
- No excess of ν 's from the SUN as compared to atm bkg is observed
- 90% CL upper limit on total integrated muon-neutrino flux from WIMP annihilations in the Sun for τ<sup>+</sup>τ<sup>-</sup>, bb and W<sup>+</sup>W<sup>-</sup> channels
- 90% CL upper limit on WIMP–nucleon scattering cross section σ<sub>χ</sub>n
- → exclusions in the "confusion zone" of positive results



uncertainty bands to take account uncertainties in the capture rate for the  $b\overline{b}$ , W<sup>+</sup>W<sup>-</sup> and  $\tau^+\tau^-$  channels

Recently published: K.Choi et al., Phys. Rev. Lett. 114, 141301 (2015)

#### Galactic WIMP search


diffuse signal from entire Galaxy, peaked from Galactic Center

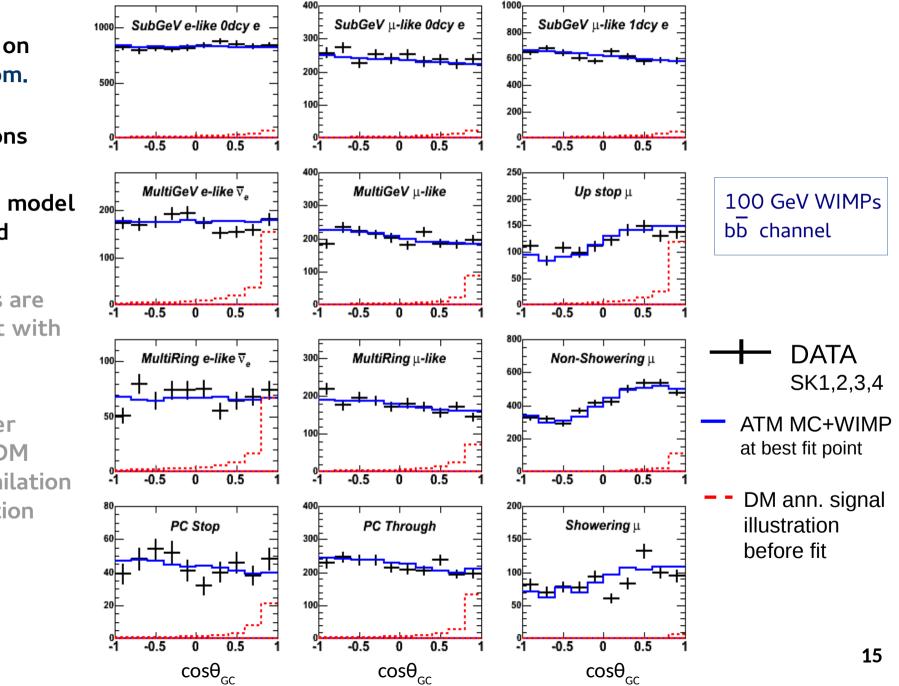
GC visibility with SK: ~71% with UPMU, 100% FC/PC

search constrains DM selfannihilation cross section  $<\sigma_A V>$ H. Yuksel et al.,

H. Yuksel et al., Phys.Rev.D76:123506 (2007)

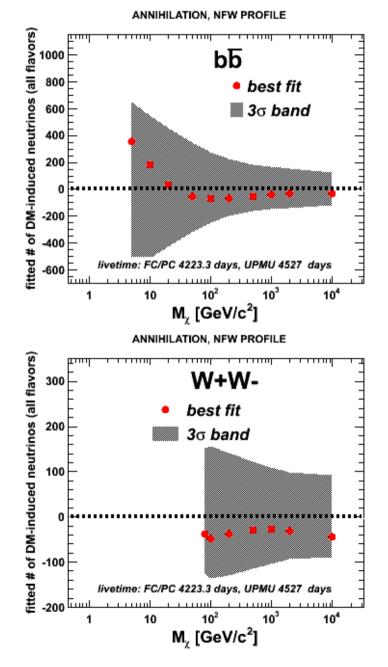
V




χ

χ

Expected signal intensity


## Galactic WIMP search – fit results

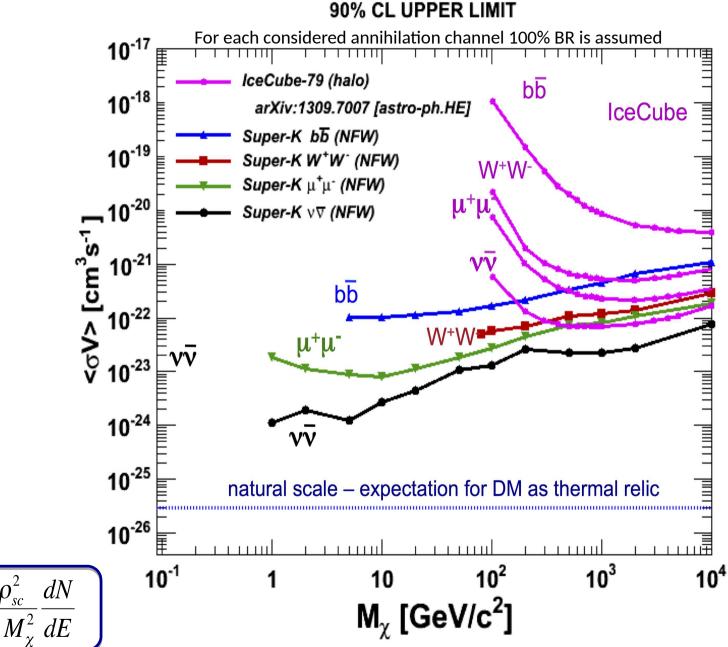
- FIT based on lepton mom.
   & cosθ<sub>GC</sub> distributions
- NFW halo model is assumed
- Fit results are consistent with zero
- 90 % upper limits on DM self–annihilation cross section <σ<sub>A</sub>V>



#### Galactic WIMP search — fitted number of DM-induced neutrinos

- FIT based on lepton mom.
   & cosθ<sub>GC</sub> distributions
- NFW halo model is assumed
- Fit results are consistent with zero
- 90 % upper limits on DM self–annihilation cross section <σ<sub>A</sub>V>



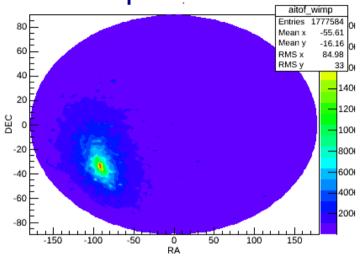


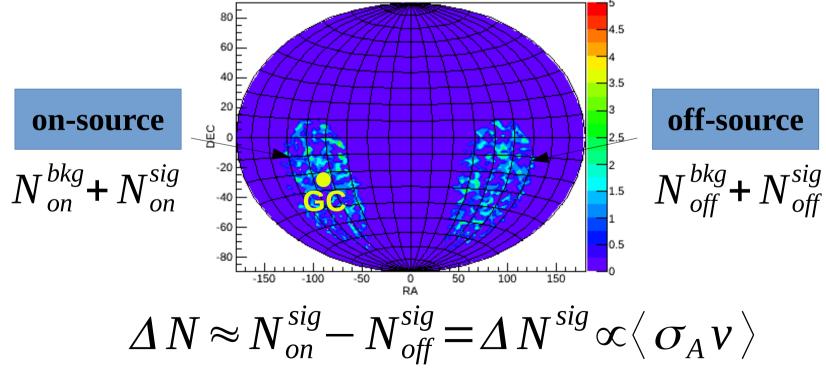

### Galactic WIMP search – DM annihilation cross section

- FIT based on lepton mom.
   & cosθ<sub>GC</sub> distributions
- NFW halo model is assumed
- Fit results are consistent with zero

 90 % upper limits on DM self-annihilation cross section <σ<sub>A</sub>V>

 $d\phi_{\Delta\Omega}$  $R_{sc}\rho_{sc}^2$ dN $\langle \sigma_A \rangle$  $^{/}J_{\scriptscriptstyle\Delta\Omega}$  $4\pi \cdot M_{\chi}^2 dE$ dE

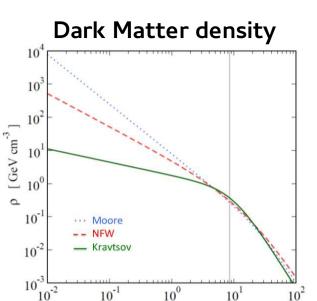




 $J_{_{\Lambda O}}$  is integrated intensity over all sky, depends on DM halo profile

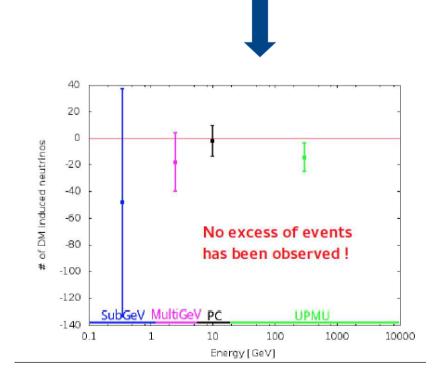
## Galactic WIMP search different approach

- Analysis uses on-source/off-source method to estimate the background directly from the data
   method independent of MC simulations and related systematic uncertainties
- DM simulation is used only to optimize analysis

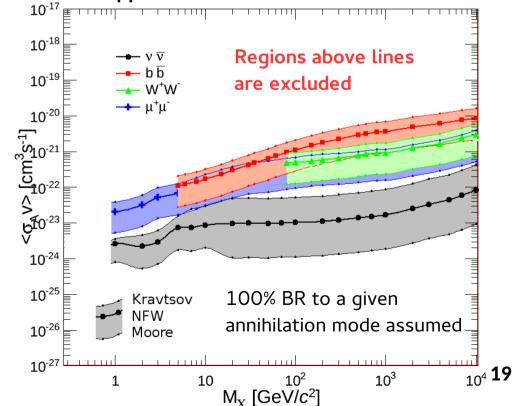
#### **Expectations:**







### Galactic WIMP search ON- & OFF-source methods results

#### Based on SK 1-4 data (1996-2014)

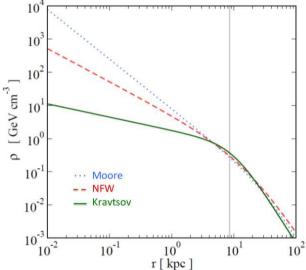

| Sample       | Size | On-source | Off-source | <b>▲</b> N sig | 90% CL 🗛 sig |
|--------------|------|-----------|------------|----------------|--------------|
| FC Sub GeV   | 80   | 3628      | 3676       | -48 ± 85.5     | 114.4        |
| FC Multi GeV | 30   | 233       | 251        | -18±22         | 26.9         |
| PC           | 20   | 65        | 67         | -2 ± 11.5      | 17.7         |
| UPMU         | 10   | 49.2      | 63.5       | -14.3 ± 10.6   | 10.8         |
| ALL          | 35   | 2010.4    | 2161.1     | -150.7±64.6    | 49.3         |

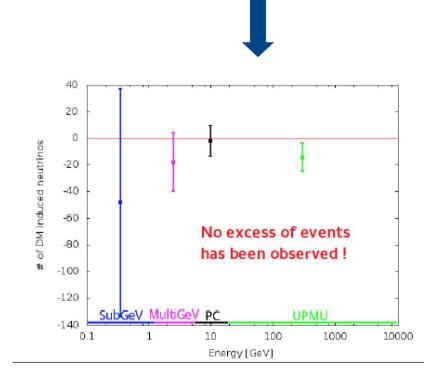


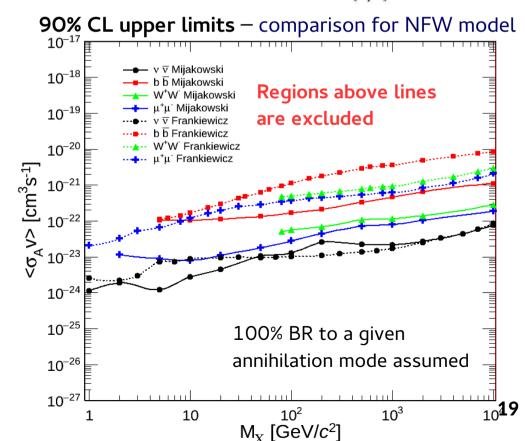
r [kpc]



#### 90% CL upper limits + halo model choice influence





### Galactic WIMP search ON- & OFF-source methods results


#### Based on SK 1-4 data (1996-2014)

| Sample       | Size | On-source | Off-source | <b>▲</b> N sig | 90% CL 🗛 sig |
|--------------|------|-----------|------------|----------------|--------------|
| FC Sub GeV   | 80   | 3628      | 3676       | -48 ± 85.5     | 114.4        |
| FC Multi GeV | 30   | 233       | 251        | -18±22         | 26.9         |
| PC           | 20   | 65        | 67         | -2 ± 11.5      | 17.7         |
| UPMU         | 10   | 49.2      | 63.5       | -14.3 ± 10.6   | 10.8         |
| ALL          | 35   | 2010.4    | 2161.1     | -150.7±64.6    | 49.3         |

#### Dark Matter density







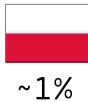
## Summary

- No excess of DM induced u's has been observed at SK
- Solar WIMP search results recently published
  - current best limits on the SD WIMP-proton cross section for WIMP masses below 200 GeV/c<sup>2</sup>
- Galactic WIMP search
  - upper limits on DM self–annihilation cross section  $<\sigma_A V>$  in wide energy range from 1 GeV to 10 TeV
  - estimated DM halo model influence

## Super-Kamiokande collaboration








~6%



~3%





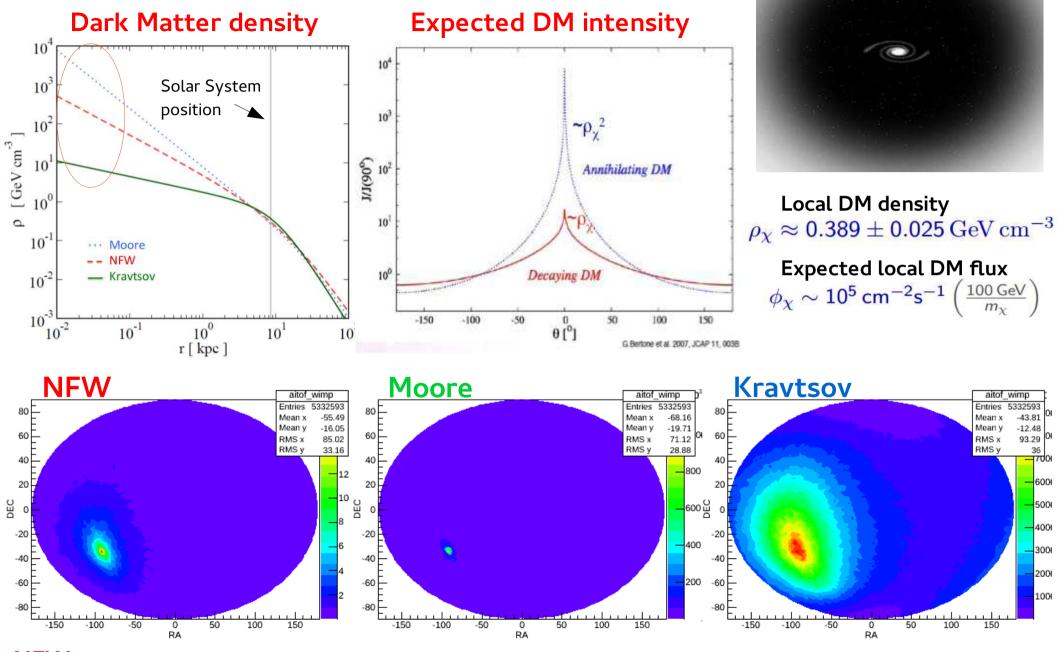


~1%

#### A recent author list for the Super-Kamiokande Collaboration

K. Abe,<sup>1,30</sup> Y. Haga,<sup>1</sup> Y. Hayato,<sup>1,30</sup> M. Ikeda,<sup>1</sup> K. Iyogi,<sup>1</sup> J. Kameda,<sup>1,30</sup> Y. Kishimoto,<sup>1,30</sup> M. Miura,<sup>1,30</sup> S. Moriyama,<sup>1,30</sup> M. Nakahata,<sup>1,30</sup> T. Nakajima,<sup>1</sup> Y. Nakano,<sup>1</sup> S. Nakayama,<sup>1,30</sup> A. Orii,<sup>1</sup> H. Sekiya,<sup>1,30</sup> M. Shiozawa,<sup>1,30</sup> A. Takeda,<sup>1,30</sup> H. Tanaka,<sup>1</sup> T. Tomura,<sup>1,30</sup> R. A. Wendell,<sup>1,30</sup> R. Akutsu,<sup>2</sup> T. Irvine,<sup>2</sup> T. Kajita,<sup>2,30</sup> K. Kaneyuki,<sup>2,30,\*</sup> Y. Nishimura,<sup>2</sup> E. Richard,<sup>2</sup> K. Okumura,<sup>2,30</sup> L. Labarga,<sup>3</sup> P. Fernandez,<sup>3</sup> J. Gustafson,<sup>4</sup> C. Kachulis,<sup>4</sup> E. Kearns,<sup>4,30</sup> J. L. Raaf,<sup>4</sup> J. L. Stone,<sup>4,30</sup> L. R. Sulak,<sup>4</sup> S. Berkman,<sup>5</sup> C. M. Nantais,<sup>5</sup> H. A. Tanaka,<sup>5</sup> S. Tobayama,<sup>5</sup> M. Goldhaber,<sup>6,\*</sup> W. R. Kropp,<sup>7</sup> S. Mine,<sup>7</sup> P. Weatherly,<sup>7</sup> M. B. Smy,<sup>7,30</sup> H. W. Sobel,<sup>7,30</sup> V. Takhistov,<sup>7</sup> K. S. Ganezer,<sup>8</sup> B. L. Hartfiel,<sup>8</sup> J. Hill,<sup>8</sup> N. Hong,<sup>9</sup> J. Y. Kim,<sup>9</sup> I. T. Lim,<sup>9</sup> R. G. Park,<sup>9</sup> A. Himmel,<sup>10</sup> Z. Li,<sup>10</sup> E. O'Sullivan,<sup>10</sup> K. Scholberg,<sup>10,30</sup> C. W. Walter,<sup>10,30</sup> T. Wongjirad,<sup>10</sup> T. Ishizuka,<sup>11</sup> S. Tasaka,<sup>12</sup> J. S. Jang,<sup>13</sup> J. G. Learned,<sup>14</sup> S. Matsuno,<sup>14</sup> S. N. Smith,<sup>14</sup> M. Friend,<sup>15</sup> T. Hasegawa,<sup>15</sup> T. Ishida,<sup>15</sup> T. Ishida,<sup>15</sup> T. Nakadaira,<sup>15</sup> K. Nakamura,<sup>15,30</sup> Y. Oyama,<sup>15</sup> K. Sakashita,<sup>15</sup> T. Sekiguchi,<sup>15</sup> T. Tsukamoto,<sup>15</sup> A. T. Suzuki,<sup>16</sup> Y. Takeuchi,<sup>16,30</sup> T. Yano,<sup>16</sup> S. V. Cao,<sup>17</sup> T. Hiraki,<sup>17</sup> S. Hirota,<sup>17</sup> K. Huang,<sup>17</sup> T. Kikawa,<sup>17</sup> A. Minamino,<sup>17</sup> T. Nakaya,<sup>17,30</sup> K. Suzuki,<sup>17</sup> Y. Fukuda,<sup>18</sup> K. Choi,<sup>19</sup> Y. Itow,<sup>19</sup> T. Suzuki,<sup>19</sup> P. Mijakowski,<sup>20</sup> K. Frankiewicz,<sup>20</sup> J. Hignight,<sup>21</sup> J. Imber,<sup>21</sup> C. K. Jung,<sup>21</sup> X. Li,<sup>21</sup> J. L. Palomino,<sup>21</sup> M. J. Wilking,<sup>21</sup> C. Yanagisawa,<sup>21,+</sup> D. Fukuda,<sup>22</sup> H. Ishino,<sup>22</sup> T. Kayano,<sup>22</sup> A. Kibayashi,<sup>22</sup> Y. Koshio,<sup>22</sup> T. Mori,<sup>22</sup> M. Sakuda,<sup>22</sup> C. Xu,<sup>22</sup> Y. Kuno,<sup>23</sup> R. Tacik,<sup>24,32</sup> S. B. Kim,<sup>25</sup> H. Okazawa,<sup>26</sup> Y. Choi,<sup>27</sup> K. Nishijima,<sup>28</sup> M. Koshiba,<sup>29</sup> Y. Suda,<sup>29</sup> Y. Totsuka,<sup>29,\*</sup> M. Yokoyama,<sup>29,30</sup> C. Bronner,<sup>30</sup> M. Hartz,<sup>30</sup> K. Martens,<sup>30</sup> Ll. Marti,<sup>30</sup> M. R. Vagins,<sup>30,7</sup> J. F. Martin,<sup>31</sup> A. Konaka,<sup>32</sup> S. Chen,<sup>33</sup> Y. Zhang,<sup>33</sup>

Japan U.S.A. Canada South Korea China Poland Spain <sup>2</sup>Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan <sup>3</sup>Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain <sup>4</sup>Department of Physics, Boston University, Boston, MA 02215, USA <sup>5</sup>Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T1Z4, Canada <sup>6</sup>Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA <sup>7</sup>Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA <sup>8</sup>Department of Physics, California State University, Dominguez Hills, Carson, CA 90747, USA <sup>9</sup>Department of Physics, Chonnam National University, Kwangiu 500-757, Korea <sup>10</sup>Department of Physics, Duke University, Durham NC 27708, USA <sup>11</sup> Junior College, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295, Japan <sup>12</sup>Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan 13 GIST College, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea 14 Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA <sup>15</sup>High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan <sup>16</sup>Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan <sup>17</sup>Department of Physics, Kvoto University, Kvoto, Kvoto 606-8502, Japan <sup>18</sup>Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan <sup>19</sup>Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8602, Japan 20 National Centre For Nuclear Research, 00-681 Warsaw, Poland <sup>21</sup>Department of Physics and Astronomy, State University of New York at Stony Brook, NY 11794-3800, USA <sup>22</sup>Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan 23 Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan <sup>24</sup>Department of Physics, University of Regina, 3737 Wascana Parkway, Regina, SK, S4SOA2, Canada <sup>25</sup>Department of Physics, Seoul National University, Seoul 151-742, Korea <sup>26</sup>Department of Informatics in Social Welfare, Shizuoka University of Welfare, Yaizu, Shizuoka, 425-8611, Japan Department of Physics, Sungkvunkwan University, Suwon 440-746, Korea <sup>28</sup>Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan <sup>29</sup>The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan <sup>30</sup>Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study. University of Tokyo, Kashiwa, Chiba 277-8582, Japan 31 Department of Physics, University of Toronto, 60 St., Toronto, Ontario, M5S1A7, Canada 32 TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T2A3, Canada


<sup>1</sup>Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan

<sup>33</sup>Department of Engineering Physics, Tsinghua University, Beijing, 100084, China <sup>34</sup>Department of Physics, University of Washington, Seattle, WA 98195-1560, USA U.S. operations of Super-Kamiokande is funded by:



Office of Science U.S. Department of Energy

## Dark Matter halo models



aitof wimp

RMS v

150

43.81

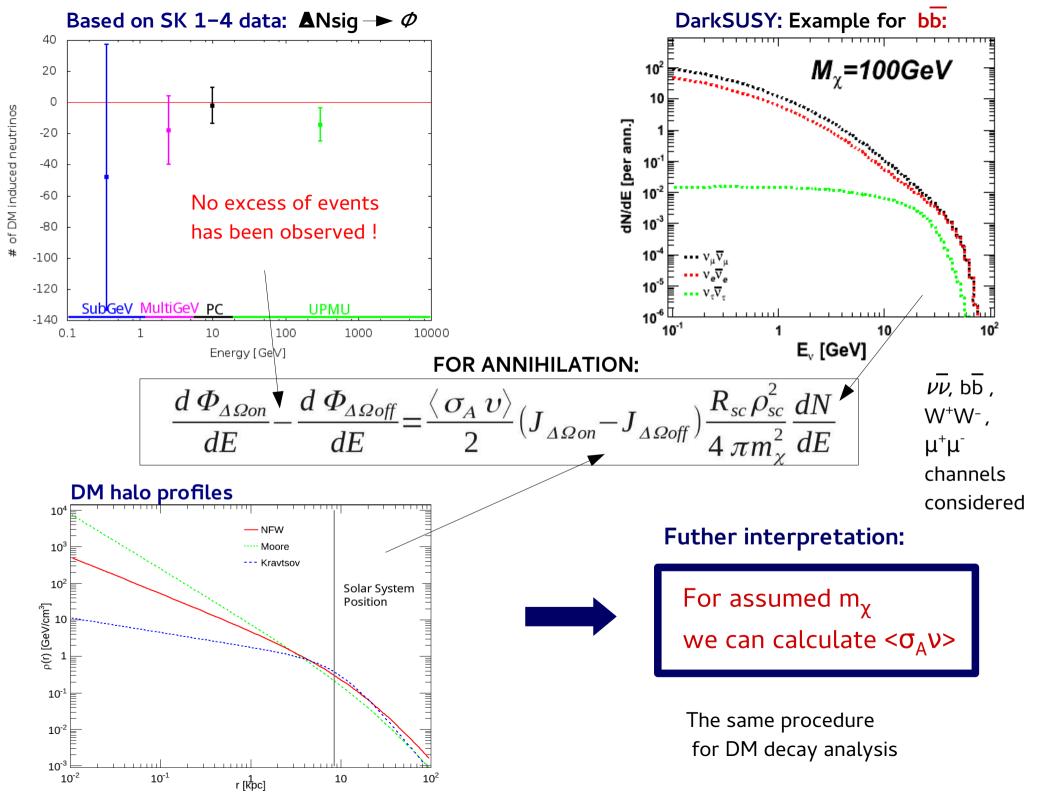
-12.48

93.29

36 700

600

500 400


3004

200

100

NFW – benchmark model

Moore & Kravtsov – extreme cases (to estimate the impact of halo model choice on the results)

