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The Higgs has been found. Now what? 

•  Higgs Boson discovered by ATLAS & 
CMS at the LHC with mH = 126 GeV/c2 

•  Next machine: likely a lepton collider 
-  lepton colliders à precision measurement 
-  control over CM energy 
-  lower backgrounds 
-  historical example: Z0 

•  Physics goals: 
-  Clean observation of Higgs mass, width, 

spin, C and P numbers 
-  Coupling to W+/-, Z0, leptons, and quarks 

•  scale with mass 
-  Self-coupling of Higgs field 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

1987-1998: 
precision Z0 

studies 

1981: Z0 
discovery 
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Higgs Factories and Beyond… 

•  Two general approaches: 
-  Higgs Factory and that’s it: ~250 GeV CM 

•  γ γ collider (Compton scatter off e-) 
•  e+ e- collider ring (like LEP) 

-  Higgs Factory upgradable to ≳TeV 
•  e+ e- linear collider 

-  ILC (super conducting linac @ Japan[?]) 
-  CLIC (two-beam room temp. linac @ CERN) 
-  Plasma Wakefield Accelerator 

•  µ+ µ- collider (@ Fermilab) 

•  Construction cost ~total length 
~(accelerating gradient)-1 

•  Operational cost ~power consumption 
•  Need high gradient and high efficiency! 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

Higgs Factory dominant 
production mechanism: 

Higgs-strahlung ~s-1 

>TeV Energy dominant 
production mechanism: 
WW-fusion ~log(s/mh

2) 
[also ZZ-fusion, and  

e+ e- à t tbar H] 
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Plasma Wakefield Acceleration (PWFA): 
Efficient Energy Transformer 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

•  Two e- bunches enter, one e- bunch leaves (with appreciable energy) 
•  “Energy transformer”: higher current @ low E à lower current @ high E 

•  Simultaneously focuses (guides) and accelerates beam 

 

•  High accelerating gradient: ~10 GeV/m 
•  High energy transfer efficiency: ~50% (drive à plasma à witness) 

Lab Frame 

drive beam 
witness 
beam 

~200 µm 



Tzoufras et al., PRL 101-145002 (2008) 
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Plasma Wakefield Acceleration Mechanism 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

•  Plasma is already “broken down”; 
can sustain very high fields 

•  drive bunch repels plasma 
electrons outward 

•  massive ions remain in place; 
attracts plasma e- back inward and 
focuses beam e- 

•  current of plasma e- sheath gives 
rise to accelerating “wake” field 

•  witness bunch rides inside the wake 
bubble near the rear 

•  properly shaped witness bunch can 
“flatten” field for minimized energy 
spread and maximized energy 
transfer efficiency 

 

e- e- 

=ct-z 

drive wit. 

neutral 
plasma 

bare ions 

plasma 
e- sheath 

decelerating accelerating 
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PWFA Linear Collider Concept 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

plasma 

drive 
beam 

main 
beam 

main 
beam 

drive 
beam 

Single PWFA Stage 

+25 GeV 

•  250 GeV – 3 TeV CM energy range 
•  1 TeV design: 4.5 km long 

(dominated by final focus) 
E. Adli, J. P. Delahaye, et al., arXiv:1308.1145v2 
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Colliders Compared by Length or Circumference 

M. Litos, APS DPF Meeting, Aug. 7, 2015 
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Colliders Compared by Integrated Luminosity / Wall Plug Power 

M. Litos, APS DPF Meeting, Aug. 7, 2015 
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PWFA is strong across the board 
in terms of size and efficiency 
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PWFA Experimental Milestones 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

q Demonstration of high-gradient acceleration 

q Demonstration of meter-scale propagation 

q Acceleration of a discrete beam of electrons 

q Demonstration of high energy transfer efficiency 

q Minimization of energy spread 

q Preservation of beam emittance 
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Final Focus Test Beam (FFTB) Facility at SLAC 

M. Litos, APS DPF Meeting, Aug. 7, 2015 10 
I. Blumenfeld et al., Nature 445 741 (2007) 

Energy

Doubled


•  Single beam experiment from 
1990’s to 2000’s 

•  Particles in tail of 42 GeV beam 
were energy doubled in 85cm 

•  High gradient field: 52 GeV/m(!) 
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PWFA Experimental Milestones 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

ü Demonstration of high-gradient acceleration 

ü Demonstration of meter-scale propagation 

q Acceleration of a discrete beam of electrons 

q Demonstration of high energy transfer efficiency 

q Minimization of energy spread 

q Preservation of beam emittance 
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Facility for Advanced Accelerator Experimental Tests (FACET) 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

•  Designed for PWFA 
•  E-200 PWFA Experiment lead by 

SLAC and UCLA 
•  2km of SLAC linac provides 

compressed, 3 nC, 20 GeV 
electron or positron beam to 
experimental area 

•  Main beam is split into two 
bunches: one to drive wake, one 
to ride it 

•  Beam sent into Li vapor plasma 
source with density ~5x1016 cm-3 

•  Only source of such high energy 
density e- and e+ in the world! 



Two-Bunch Beam Generation 

1. Disperse 
2. Chop 

3. Compress 
4. Accelerate 

5. Diagnose 

FACET Experimental Area (100 m) 
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Plasma Source: Laser + Metal Vapor 

•  10 TW Ti:Sapphire 
laser system 

•  Line focus generated 
with axicon lens 

axicon 

Laser Profile 

14 M. Litos, APS DPF Meeting, Aug. 7, 2015 
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E-200: First Demonstration 

•  70 pC accelerated in 30 cm 

pre-ionized Li vapor plasma 

•  Mean energy gain: 1.7 GeV 

•  Mean energy spread ~2% 

•  Gradient of ~5 GeV/m 

•  Mean wake-to-bunch energy 

transfer efficiency 18% 

Spectrally dispersed final beam 
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E-200: First Demonstration 

•  70 pC accelerated in 30 cm 

pre-ionized Li vapor plasma 

•  Mean energy gain: 1.7 GeV 

•  Mean energy spread ~2% 

•  Gradient of ~5 GeV/m 

•  Mean wake-to-bunch energy 

transfer efficiency 18% 

Spectrally dispersed final beam 
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M. Litos, et al., Nature 515 92-15 (2014)  
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High Wake-to-Bunch Energy Transfer Efficiency 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

•  Energy loss of drive bunch = 
energy put into wake 

•  Energy transfer efficiency 
from wake to trailing bunch: 
energy gain by trailing bunch / 
energy loss by drive bunch 

•  Mean wake-to-bunch energy 
transfer efficiency of 18% 
core, 31% total 

•  Max efficiency of 30% core, 
50% total 

•  Approaching collider design 



Final Dispersed Beam Profile 

18 

Comparison to Simulation 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

•  Particle-In-Cell (PIC) simulation with QuickPIC (UCLA) for beam-
plasma interaction 

•  PIC output then propagated through simulated beamline 
•  Shows very good qualitative agreement with observed final spectrum 
•  Gives insight into beam-plasma coupling: trailing bunch was too long 

and wide to fully couple into plasma wake 
•  Shows loading of wake à key to efficient energy extraction 

PIC Simulation 

= z - ct 
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PWFA Experimental Milestones 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

ü Demonstration of high-gradient acceleration 

ü Demonstration of meter-scale propagation 

ü Acceleration of a discrete beam of electrons 

ü Demonstration of high energy transfer efficiency 

q Minimization of energy spread 

q Preservation of beam emittance 



E-200: Multi-GeV Positron PWFA 

 
 
 
 

•  Sent high charge, high density 
e+ beam into high density 
plasma for first time ever à 
Surprise result! 

•  Observed features: 
-  High energy gain 
-  Small energy spread 
-  Low divergence 
-  High charge 

•  Experimental discovery of 
positron PWFA in self-loaded, 
non-linear plasma wake! 

20 M. Litos, APS DPF Meeting, Aug. 7, 2015 

5.7 GeV gain 
126 pC 

4.4 GeV gain 
207 pC 

np = 8x1016 cm-3 

Lp = 1.3 m 



Understanding the Result:  
Longitudinal and Transverse Beam Loading 

21 M. Litos, APS DPF Meeting, Aug. 7, 2015 

Unloaded Wake 

defocusing 

Self-Loaded Wake 

focusing 

•  After first results, barrage 
of simulations at UCLA 

•  Helped understand 
physical mechanism of e+ 
self-loading PWFA 

•  Channelling of plasma 
electrons is key to 
focusing and loading 

•  Suggests afterburner 
application 

•  Accepted for publication 
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What Lies Ahead 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

•  FACET (2011-2016) 
•  Optimize two-bunch e- PWFA 
•  Optimize e+ PWFA 
•  High-brightness witness bunch injection schemes 
•  PWFA of e- and e+ with hollow channel plasma 

•  FACET-II (2018-20XX) 
•  Witness beam emittance preservation 
•  Witness beam energy spread minimization 
•  Staging studies 
•  Positrons in electron driven wakes 
•  Lots more… 

•  Target Applications 
•  Near future: Light sources (XFEL) 
•  Far future: ILC after burner 
•  Farther future: PWFA linear collider! 
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Summary 

M. Litos, APS DPF Meeting, Aug. 7, 2015 

•  The next big particle physics machine will be a lepton collider 
•  PWFA linear collider fits the bill 

-  PWFA: compact and efficient energy transformer 
-  scalable from Higgs Factory to >TeV 

•  SLAC has achieved important milestones: 
-  high gradient and meter scale propagation at FFTB 
-  discrete bunch acceleration and high efficiency at FACET 

•  New regime of e+ PWFA discovered at FACET 
-  potential after-burner application 

•  Experiments continue at FACET and soon FACET-II toward 
applications from light sources to colliders 
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The FACET E-200 PWFA Collaboration 

M. Litos, APS DPF Meeting, Aug. 7, 2015 
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