Search for new phenomena in jet+MET and $\gamma+$MET final states at the ATLAS detector

Fuquan Wang
University of Wisconsin-Madison

August 5, 2015
DPF 2015, Ann Arbor, Michigan
Motivation for jet+MET search

- Weakly interactive massive particles (WIMPs), dark matter candidates, can be produced in pair at colliders.
 - Large missing transverse energy (MET) from WIMPs.
- An energetic visible object is needed to tag these events.
 - Jets, from gluon initial state radiation, are dominating.
- Jet+MET final state is the most sensitive channel in general dark matter search at LHC.
 - Same event signature can be interpreted in other searches
 - Large extra dimension or SUSY signatures

Effective field theory (EFT) 2

Simplified models
Event selection and backgrounds

- **Cut-and-count** analysis
- A good primary vertex, MET>150 GeV, $p_T^{j1}>120$ GeV
- Jet should be balancing the MET and in opposite direction
- Reject events with bad jets
 - Cosmic rays, detector noise or beam-related background
- Reject events with electrons, muons or isolated tracks
- Scan on MET to increase sensitivities

Event signature to be looked for

jet (after hadronization)

Missing transverse momentum
Event selection and backgrounds

- Major backgrounds:
 - $Z(\nu\nu)/W(l\nu)+\text{jets}$
 - Estimated with control regions (CR) data/MC transfer factors
 - $Z(ll)/W(e\nu)/W(\mu\nu)+\text{jets CRs}$
- Minor backgrounds:
 - Estimated from MC: $Z/\gamma^*(ll)+\text{jets}$, $t\bar{t}$bar, diboson
 - Estimated with data-driven method: multijets, non-collision backgrounds
8 TeV results

- No discrepancy between observation and Standard Model (SM) expectation.
- Limits are set on various signal models.
 - Tune MET cuts against models, use the most sensitive one

![Graph showing ATLAS results with data comparisons and signal models](image-url)
• The 90% CL limit is set on EFT models.
 • Interpretations in WIMP-nucleon cross section.
• Better sensitivity compared to direct detection experiments:
 • Low WIMP mass region for spin-independent models
 • Uniformly powerful for spin-dependent models
• 95% CL limit set on coupling strength in simplified models
• 95% CL limits on suppression scale (M*) is compared between simplified models and EFT
 • Limits the same at high mediator mass, where the mediator is off-shell
• \(M_* = \frac{M_{\text{mediator}}}{\sqrt{g_\chi g_f}} \)
Interpretation for extra dimension search

- Arkani-Hamed, Dimopoulos, and Dvali (ADD) model allows the graviton to propagate in additional dimensions.
 - MET from the missing graviton
- 95% CL limit on fundamental Plank scale m_D in $4+n$ dimensions
 - $\sigma(n, M_D) \propto M_D^{-n-2}$
 - n is the number of extra dimensions
Interpretation for SUSY

- Associated production of a gravitino (\tilde{G}) and a gluino (\tilde{g}) or a squark (\tilde{q})
- Similar final state as jet+MET signature
- 95% CL limit on gravitino mass $m_{\tilde{G}}$
- Various $m_{\tilde{g}}/m_{\tilde{q}}$ configurations tested

NWA = narrow width approximation
14 TeV prospects
jet+MET, ATL-PHYS-PUB-2014-007

- Study based on MC. EFT models only.
- With the increase of \sqrt{s}, the signal cross sections increase much faster than $Z(\nu\nu)$+jets background at high MET.
14 TeV prospects

jet+MET, ATL-PHYS-PUB-2014-007

- Compared to 8 TeV:
 - More sensitive, greater potential for discovery.
 - LHC Run-II operates at 13 TeV, close sensitivity with 14 TeV

Suppression Scale M [GeV]

<table>
<thead>
<tr>
<th>E_T^{miss} threshold [GeV]</th>
<th>400</th>
<th>600</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 TeV, 25 fb$^{-1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 TeV, 20 fb$^{-1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5% syst</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_\chi = 50$ GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_\chi = 400$ GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance [\sigma]

<table>
<thead>
<tr>
<th>M [TeV]</th>
<th>1</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
<th>2</th>
<th>2.2</th>
<th>2.4</th>
<th>2.6</th>
<th>2.8</th>
<th>3</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{s} = 14$ TeV $\int Ldt = 25$ fb$^{-1}$ D5, $m_\chi = 50$ GeV $\pi < \sqrt{g_{SM} g_{DM}} < 4\pi$</td>
<td></td>
</tr>
<tr>
<td>5\sigma discovery</td>
<td></td>
</tr>
<tr>
<td>3\sigma evidence</td>
<td></td>
</tr>
</tbody>
</table>
Motivation for γ+MET search

- Well measured γ object. Cleaner background from electro-weak processes
- Complements the initial state radiation search
- Exclusively sensitive to certain dark matter models
- γ can be directly involved in dark matter vertex

\[\bar{q} \gamma q \bar{\chi} \rightarrow \chi \gamma \] vertex

\[\bar{q} \gamma q \bar{\chi} \rightarrow \chi \gamma \] vertex
Event selection and backgrounds

\(\gamma + \text{MET}, \text{Phys. Rev. D 91, 012008 (2015)} \)

- Selection: (**no MET tuning** on models, cut-and-count analysis)
 - Similar to jet+MET, replacing the jet with \(\gamma \)
 - Lepton veto. No more than 1 jet.
- Backgrounds:
 - Major backgrounds: \(Z(\nu\nu) + \gamma, W(l\nu) + \gamma \) (estimated with CRs)
 - \(W/Z + \text{jets} \) (estimated with data-driven jet\(\rightarrow \gamma \) factor)
 - \(\text{ttbar, single top, diboson} \) (estimated with MC)
- Simultaneous fit with signal region and CRs (\(\mu\mu\gamma, e\epsilon\gamma, \mu\nu\gamma \))
 - \(N = \text{Poiss}(N|\mu \times N_{\text{sig}} + k_Z \times N_{Z\gamma} + k_W \times N_{W\gamma} + N_{\text{other}}) \)
 - \(k_Z/k_W \): shared scale factor in all regions for \(Z\gamma/W\gamma \) process
 - \(N_{Z\gamma}/N_{W\gamma} \): MC yields for \(Z\gamma/W\gamma \) processes in each region
 - \(N_{\text{other}} \) from data-driven or MC
8 TeV results

- No excess is observed compared to SM expectation.
- Upper limit of model-independent cross section on possible excess: 5.3 fb at 95% CL
90% CL limit on EFT models translated into WIMP-nucleon cross section.

Similar with jet+MET compared to direct detections.

Less sensitive compared to jet+MET analysis.

\[
\chi m \frac{1}{10^{12}} \chi m \frac{1}{10^{13}} \chi m \frac{1}{10^{14}}
\]

\[
\int L dt = 20.3 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}
\]
Interpretation for ADD/squark

• ADD model
• 95% CL limit on Plank Scale vs. number of extra dimensions
• ~2.2 TeV for all number of extra dimensions

- Squark search:
 - pair production of squark
 - $\tilde{q} \rightarrow q + \text{LSP}$, Lightest SUSY Particle can be invisible
• 95% CL limit on cross section for pair production.
• $m_{\tilde{q}} \hspace{1mm} \text{vs} \hspace{1mm} \Delta m$ plane:
• Left region of plane excluded

![Graph showing ATLAS ADD model, 95% CL limit on M_D lower limit [TeV].](image)

- Numbers give 95% CL excluded cross section [fb]
Interpretation in $\gamma\gamma\chi\chi$ EFT

Inspired by Fermi-LAT observed γ-ray spectrum at 130 GeV
- \textit{APJ} 750 3 doi:10.1088/0004-637X/750/1/3
- 95% CL limit on suppression scale M^*.
- Exclusion is set on (k_1,k_2) plane to generate Fermi-LAT observation in the rate of $\chi\bar{\chi} \rightarrow \gamma\gamma$ annihilation.
 - $\sigma \propto (k_1 \cos^2 \theta_w + k_2 \sin^2 \theta_w)/M^*_6$
- Upper region of plane is excluded $\rightarrow M^{F-LAT}_* < M_* $ lower limit from this analysis

\[\bar{\chi}\chi \rightarrow \gamma\gamma \]

\[
\frac{1}{M^*_6} \left(k_1 \cos^2 \theta_w + k_2 \sin^2 \theta_w \right)
\]
Models in Run-II

• LHC dark matter forum (DMF) recommends dark matter models for interpretation in run-II for ATLAS and CMS.
 • White paper on arXiv:1507.00966

• Simplified models will be the baseline as EFT models have validity issues, especially at high \sqrt{s}
 • Mediators can be vector/axial-vector, scalar/pseudo-scalar
 • Recommendation on the grid to be scanned:
 • Dark matter mass, mediator mass and width

• **POWHEG** as the default generator

• EFT models will be presented with truncation:
 • UV complete
 • Kinematics: $Q_{tr} < \sqrt{g_\Phi g_\chi} M_*$ or $E_{cm} < \sqrt{g_\Phi g_\chi} M_*$
13 TeV fresh data

- Performance plots with first 50 ns data.

Summary

• The jet+MET and γ+MET final states at LHC are powerful to search dark matter candidates:
 • More sensitive compared to direct detections for spin-dependent operators or low m_χ for spin-independent ones
 • The same signature can also be interpreted in extra dimension or SUSY searches
• 8 TeV analyses show no excess compared to SM background expectations.
 • 95% CL model-independent limit on cross section
 • jet+MET: 726 fb (lowest MET SR), γ+MET 5.3 fb
• Run-II analyses
 • good potential for discovery
 • follow the LHC DMF mandate to interpret the results.
Backup
References

• Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

• Sensitivity to WIMP Dark Matter in the Final States Containing Jets and Missing Transverse Momentum with the ATLAS Detector at 14 TeV LHC
 • ATL-PHYS-PUB-2014-007

• Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at $\sqrt{s}=8$TeV with the ATLAS detector

 • arXiv:1507.00966
13 TeV fresh data

- Performance plots with first 50 ns data.
- Effect for jet cleaning shown
 - Jet cleaning not applied.
 - Good jets from hard-collision MC (Zνν+jets, Wlν+jets)

ATLAS Preliminary
\[\sqrt{s} = 13 \text{ TeV} \int \text{Ldt} \sim 78 \text{ pb}^{-1} \]
Anti-\(k_t\) R = 0.4 Jets

Jet\(p_T\) [GeV]

- Data
- Z\(\nu\nu\) + jets
- W\(l\nu\) + jets

\(N_{\text{jets}} = 1\)
\(\text{MET} > 100 \text{ GeV}\)

jet+MET selection before jet cleaning

Events / \(16\)

ATLAS Preliminary
\[\sqrt{s} = 13 \text{ TeV} \int \text{Ldt} \sim 78 \text{ pb}^{-1} \]
Anti-\(k_t\) R = 0.4 Jets

Jet \(\phi\)

- Data
- Z\(\nu\nu\) + jets
- W\(l\nu\) + jets

\(N_{\text{jets}} = 1, p_T^{\text{jet}} > 150 \text{ GeV}\)
\(\text{MET} > 100 \text{ GeV}\)

jet+MET selection before jet cleaning

$m_{\tilde{g}}$ limits for jet+MET

ATLAS

$\sqrt{s}=8$ TeV, 20.3 fb$^{-1}$

$E_T^{\text{miss}}>500/700$ GeV

$m_{\tilde{g}}=2 \times m_{\tilde{q}}$

- Observed limit
- Expected limit
- $\pm 1\sigma_{\text{exp}}$
- $\pm 2\sigma_{\text{exp}}$
- NWA limit

$m_{\tilde{g}}=4 \times m_{\tilde{q}}$

- Observed limit
- Expected limit
- $\pm 1\sigma_{\text{exp}}$
- $\pm 2\sigma_{\text{exp}}$
- NWA limit

$m_{\tilde{g}}=1/2 \times m_{\tilde{q}}$

- Observed limit
- Expected limit
- $\pm 1\sigma_{\text{exp}}$
- $\pm 2\sigma_{\text{exp}}$
- NWA limit

$m_{\tilde{g}}=1/4 \times m_{\tilde{q}}$

- Observed limit
- Expected limit
- $\pm 1\sigma_{\text{exp}}$
- $\pm 2\sigma_{\text{exp}}$
- NWA limit