Search for Top Quark Pair Resonances at CMS

No VI CONSTRUCTION OF

Justin Pilot, University of California — Davis on behalf of the CMS Collaboration

APS Meeting of the Division of Particles & Fields University of Michigan, Ann Arbor, MI

6 August 2015

Motivation

- Higgs boson discovery provided missing piece of the Standard Model
- We know there are further questions to be answered
 - What about fine tuning; what can provide a solution to the hierarchy problem??

- Several new physics models have been proposed
 - Composite Higgs
 - Extra dimensions
 - SUSY
 - Predict new particles in the 1-3 TeV range

Outline

Unmerged

hadronic top

- We present a search for new heavy resonances decaying to top quark pairs
 - CMS combination of channels recently submitted to PRD (<u>http://arxiv.org/abs/1506.03062</u>)

- Use the reconstructed top pair invariant mass to search for structures in the 1 TeV to 3 TeV mass range
 - As mass increases, decay products more boosted → special reconstruction techniques needed!

З

Top Quark Identification

- For lepton+jets mode, need to efficiently identify non-isolated leptons
 - Standard isolation requirements will remove large fraction of signal acceptance
 - Use component of p_T transverse to jet axis (p_{T,rel})
 - Efficiencies measured and validated in data/simulation comparisons

Top Quark Identification

- For hadronic mode, use jet substructure algorithms to identify merged decay products 2m
 - $\Delta R \sim$ p_T
 - ▶ Large-radius jets (R=0.8, 1.5)
 - W jets $p_T > \sim 200 \text{ GeV}$
 - Top jets $p_T > \sim 400 \text{ GeV}$
- "CMS Top Tagger" (R=0.8)
 - ▶ Jet mass, N subjets, min. di-subjet mass, N-subjettiness τ_{32} Events / 10 GeV

Data / Bkg

- ▶ "HEP Top Tagger" (R=1.5)
 - Subjet mass combinations
- Also utilize subjet b-tagging for increased purity

Outline

Several final state topologies considered; combined in final results

Outline

• Several final state topologies considered; combined in final results

Dilepton Channel

- Select 2 non-isolated leptons, 2 jets, and missing E_T
 - ΔR distribution used to extract ttbar normalization
- Events divided into categories based on b-tagging
 - ▶ 1 tight b-tagged jet
 - 2 loose b-tagged jets

1000

Events / 100 GeV

Data / Bkg

10³

10

10

1.5

CMS

 Mass is computed from two leptons, two jets, and missing E_T from neutrinos

No. of entries

Lepton+Jets Channel (Resolved)

- 'Standard' reconstruction of one object corresponding to one parton from top decay
 - 1 isolated lepton
 - 4 jets
 - At least one b-tag
- Chi-squared algorithm used to reconstruct masses
- Background is fit to a functional form; templates used for signal discrimination
- Analysis loses sensitivity at ~1 TeV due to boosted nature of decays

Lepton+Jets Channel (Boosted)

- Maintains sensitivity to resonances above 1 TeV through use of nonisolated leptons, top-tagging algorithms
- 1 electron or muon
- At least two jets, $p_T > 150$, 50 GeV
 - Can select both partially and fully merged hadronic top decays
- Missing E_T
- Events categorized based on number of CMS top-tagged jets and number of btagged jets
 - Mistag rate determined from W+jets control region

200

150

100

0

250

300

M_{iet} [GeV]

Lepton+Jets Channel (Boosted)

Events / 100 GeV

Data / Bkg

- Maintains sensitivity to resonances above 1 TeV through use of nonisolated leptons, top-tagging algorithms
- 1 electron or muon
- At least two jets, $p_T > 150$, 50 GeV
 - Can select both partially and fully merged hadronic top decays
- Missing E_T
- Events categorized based on number of CMS top-tagged jets and number of btagged jets
 - Mistag rate determined from W+jets control region
- Signal regions have high top purity

All-Hadronic Channel

- Two selections for optimization across mass range:
 - Low mass two R = 1.5 jets, $p_T > 200$ GeV, HEP top-tagged
 - High mass two R = 0.8 jets, $p_T > 400$ GeV, CMS top-tagged
- Main background is QCD multijet production
 - Reduced through use of subjet b-tagging
 - Determined by inverting top-tagging algorithm requirements
 - Measure rate in QCD dijet events in data
 - Parameterized as function of jet p_T, N-subjettiness value, b-tag score
 - Validated through closure test

All-Hadronic Channel

- Two selections for optimization across mass range:
 - Low mass two R = 1.5 jets, $p_T > 200$ GeV, HEP top-tagged
 - High mass two R = 0.8 jets, $p_T > 400$ GeV, CMS top-tagged
- Main background is QCD multijet production
 - Reduced through use of subjet b-tagging
 - Determined by inverting top-tagging algorithm requirements
 - Measure rate in QCD dijet events in data
 - Parameterized as function of jet p_T, N-subjettiness value, b-tag score
 - Validated through closure test

All-Hadronic Channel

• Events divided based on number of subjet b-tags, H_T, and jet rapidity difference

Sensitivity

Boosted analysis selections critical for high-mass regime!

Results

- We observe no significant deviations from the expected SM and set limits on three physics models:
 - Generic Z' resonance (1%, 10% width)
 - Randall-Sundrum KK gluon (~16% width)
- Observed limits exclude masses up to 2.9 TeV!

	Mass limit [TeV]							
	Dilepton Exp.	channel Obs.	Lepton+je Exp.	ets channel Obs.	All-hadro Exp.	nic channels Obs.	Coml Exp.	bined Obs.
Z' , Γ _{Z'} / $M_{Z'}$ = 1.2%	1.4	1.5	2.2	2.3	2.1	2.1	2.4	2.4
$Z^\prime, \Gamma_{Z^\prime}/M_{Z^\prime}=10\%$	2.1	2.2	2.7	2.8	2.5	2.5	2.8	2.9
RS KK gluon	1.8	2.0	2.5	2.5	2.4	2.3	2.7	2.8

Conclusions

- We performed a search for heavy resonances decaying to top quark pairs
 - Combination of several event topologies
- Critical reliance on specialized object reconstruction methods
 - Lepton (non-)isolation
 - Top-tagging algorithms
- No deviation from SM expectation is observed, we exclude masses up to 2.4 to 2.9 TeV depending on physics model
- Results available, paper submitted to PRD
 - http://arxiv.org/abs/1506.03062
 - CMS-B2G-13-008

- We look forward to what Run 2 holds for this search
 - Thank you for your attention!

IMS Subjet 3. Subjet 1, eta = 1.64 et = 203 GeV et = 275 GeV phi = 1.64 eta = 2.08 eta = 2.37 phi = 1.94 phi = 1.48CMS Experiment at LHC, CERN Top jet candidate Data recorded: Sun Jul 12 07:25:11 2015 CEST pt = 488 GeV Run/Event: 251562 / 111132974 eta = 2.22 Lumi section: 122 phi = 1.74 Orbit/Crossing: 31722792 / 2253 . mass = 176 GeV Top jet candidate 2 pt = 613 GeV $\dot{e}_{ta} = -0.70$ Subjet 4, et = 133 GeV phi = -1.46 eta = -0.47 . mass = 177 GeV phi = -1.56 Subjet 6. et = 73 GeV Subjet 5, eta = -0.18 et = 402 GeV phi = -1.30eta = -0.86 phi = -1.44

13 TeV Boosted Top Candidate!

Backup Material

CMS Top Tagger

Example: CMS Top Tagger decomposition

Secondary decomposition

HEP Top Tagger

HEP Top Tagger details

HEP Top Tagger

N-Subjettiness

• A measure of the consistency of jet constituents with N number of subjets

Other Models Results

Systematics

J					
Source of uncertainty	Prior	2ℓ	ℓ+jets	Had. channel	Had. channel
	uncertainty		<i>,</i>	high-mass	low-mass
Integrated luminosity	2.6%	\oplus	\oplus	\oplus	\oplus
tt cross section	15%	\oplus	\oplus	\oplus	\oplus
Single top quark cross section	23%	\oplus	\oplus		
Diboson cross section	20%	\oplus	\oplus		
Z+jets cross section	50%	\oplus	\oplus		
W+jets (light flavor) cross section	9%		\odot		
W+jets (heavy flavor) cross section	23%		\odot		
Electron+jet trigger	1%		\odot		
H _T trigger	2%			\oplus	\oplus
Four-jet trigger	$\pm 1\sigma(p_{\rm T})$				\odot
Single-electron trigger	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\odot			
Single-muon trigger and id	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\oplus	\oplus		
Electron ID	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\oplus	\oplus		
Jet energy scale	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\oplus	\oplus	\oplus	\oplus
Jet energy resolution	$\pm 1\sigma(\eta)$	\oplus	\oplus	\oplus	\oplus
Pileup uncertainty	$\pm 1\sigma$	\oplus	\oplus	\oplus	\oplus
b tagging efficiency ^(†)	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\oplus	\oplus		\oplus
b tagging mistag rate ^(†)	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	\oplus	\oplus		\oplus
CA8 subjet b tagging	unconstrained			\odot	
CA8 t tagged jet efficiency	unconstrained		\oplus	\oplus	
CA8 t-tagged jet mistag	$\pm 25\%$		\odot		
CA15 t-tagged jet efficiency	$\pm 1\sigma(p_{\mathrm{T}},\eta)$				\odot
QCD multijet background	sideband			\odot	\odot
PDF uncertainty	$\pm 1\sigma$	\oplus	\oplus	\oplus	\oplus
tī ren. and fact. scales	$4Q^2$ and $0.25Q^2$	\oplus	\oplus	\oplus	\oplus
W+jets ren. and fact. scales	$4Q^2$ and $0.25Q^2$		\odot		
W+jets matching scale μ	2μ and 0.5μ		\odot		
MC statistical uncertainty		\odot	\odot	\odot	\odot

Likelihood Fit Results

Process	Best fit value	Prior uncertainty	Posterior uncertainty	
tī	0.99	15%	2.1%	
W+jets (light flavor)	0.99	9%	5.0%	
W+jets (c flavor)	1.06	23%	21%	
W+jets (b flavor)	0.95	23%	18%	
Single top quark	0.83	23%	22%	
Z+jets	1.72	50%	36%	
Diboson	1.02	20%	19%	
CA8 t-tagged jets scale factor	0.94	unconstrained	3%	
CA8 subjet b tagging scale factor	1.3	unconstrained	1.5	

Cross Section Limits

	$Z', \Gamma_{Z'}/M_{Z'} = 1\%$							
$M_{Z'}$ (TeV)	Expected (pb)	Expected range $(\pm 1\sigma)$ (pb)	Expected range $(\pm 2\sigma)$ (pb)	Observed (pb)				
0.75	0.61	0.89 — 0.43	1.3 — 0.32	0.86				
1.0	0.18	0.27 — 0.13	0.37 — 0.099	0.088				
1.25	0.082	0.12 — 0.058	0.18 — 0.042	0.14				
1.5	0.04	0.057 — 0.028	0.089 — 0.02	0.041				
2.0	0.013	0.02 — 0.009	0.029 — 0.0067	0.011				
3.0	0.0086	0.013 — 0.0059	0.021 — 0.0043	0.0059				
$Z', \Gamma_{Z'}/M_{Z'} = 10\%$								
$M_{Z'}$ (TeV)	Expected (pb)	Expected range $(\pm 1\sigma)$ (pb)	Expected range $(\pm 2\sigma)$ (pb)	Observed (pb)				
0.75	0.83	1.2 — 0.57	1.8 — 0.42	0.89				
1.0	0.26	0.37 — 0.18	0.53 — 0.14	0.13				
1.25	0.13	0.19 — 0.09	0.26 — 0.067	0.22				
1.5	0.063	0.089 — 0.044	0.13 — 0.03	0.064				
2.0	0.023	0.034 — 0.016	0.055 — 0.011	0.018				
3.0	0.023	0.036 — 0.016	0.055 — 0.011	0.017				
RS KK gluon								
$M_{g_{KK}}$ (TeV)	Expected (pb)	Expected range $(\pm 1\sigma)$ (pb)	Expected range $(\pm 2\sigma)$ (pb)	Observed (pb)				
0.7	1.7	2.5 — 1.2	3.8 — 0.84	3.5				
1.0	0.42	0.6 — 0.28	0.84 — 0.21	0.24				
1.4	0.16	0.23 — 0.11	0.32 — 0.078	0.25				
1.5	0.12	0.17 — 0.083	0.24 — 0.059	0.15				
1.8	0.064	0.098 — 0.045	0.15 — 0.032	0.056				
2.0	0.05	0.074 — 0.034	0.12 — 0.024	0.038				
2.5	0.045	0.068 — 0.03	0.11 — 0.021	0.034				
3.0	0.059	0.088 — 0.039	0.15 — 0.028	0.041				