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Motivation
‣ Higgs boson discovery provided missing 

piece of the Standard Model 

‣ We know there are further questions to 
be answered 
‣ What about fine tuning; what can 

provide a solution to the hierarchy 
problem?? 

‣ Several new physics models have been 
proposed 
‣ Composite Higgs 
‣ Extra dimensions 
‣ SUSY 

‣ Predict new particles in the 1-3 TeV 
range
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Outline
‣ We present a search for new heavy 

resonances decaying to top quark pairs 
‣ CMS combination of channels 

recently submitted to PRD  
(http://arxiv.org/abs/1506.03062) 

‣ Use the reconstructed top pair invariant 
mass to search for structures in  
the 1 TeV to 3 TeV mass range 
‣ As mass increases, decay products 

more boosted → special 
reconstruction techniques needed!
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Top Quark Identification
‣ For lepton+jets mode, need to 

efficiently identify non-isolated leptons 

‣ Standard isolation requirements will 
remove large fraction of signal 
acceptance 

‣ Use component of pT transverse to 
jet axis (pT,rel) 

‣ Efficiencies measured  
and validated in data/simulation 
comparisons
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Top Quark Identification
‣ For hadronic mode, use jet substructure 

algorithms to identify merged decay 
products 

‣ Large-radius jets (R=0.8, 1.5) 
‣ W jets — pT > ~200 GeV 
‣ Top jets — pT > ~400 GeV 

‣ “CMS Top Tagger” (R=0.8) 
‣ Jet mass, N subjets, min. di-subjet 

mass, N-subjettiness τ32 
‣ “HEP Top Tagger” (R=1.5) 
‣ Subjet mass combinations 

‣ Also utilize subjet b-tagging for 
increased purity
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Lepton+jets (Boosted)

All-Hadronic

Lepton+jets (Resolved)

‣ Several final state topologies considered; combined in final results

Dilepton

Outline
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Lepton+jets (Boosted)

All-Hadronic

Lepton+jets (Resolved)

‣ Several final state topologies considered; combined in final results

Dilepton

Outline
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Dilepton Channel
‣ Select 2 non-isolated leptons, 2 jets, 

and missing ET 
‣ ∆R distribution used to extract ttbar 

normalization 

‣ Events divided into categories based on 
b-tagging 
‣ 1 tight b-tagged jet 
‣ 2 loose b-tagged jets 

‣ Mass is computed from two leptons, 
two jets, and missing ET from neutrinos
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Lepton+Jets Channel (Resolved)
‣ ‘Standard’ reconstruction of one object 

corresponding to one parton from top 
decay 
‣ 1 isolated lepton 
‣ 4 jets 
‣ At least one b-tag 

‣ Chi-squared algorithm used to 
reconstruct masses 

‣ Background is fit to a functional form; 
templates used for signal discrimination 

‣ Analysis loses sensitivity at ~1 TeV due 
to boosted nature of decays
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Lepton+Jets Channel (Boosted)
‣ Maintains sensitivity to resonances 

above 1 TeV through use of non-
isolated leptons, top-tagging algorithms 

‣ 1 electron or muon 
‣ At least two jets, pT > 150, 50 GeV 
‣ Can select both partially and fully 

merged hadronic top decays 
‣ Missing ET 

‣ Events categorized based on number of 
CMS top-tagged jets and number of b-
tagged jets 
‣ Mistag rate determined from  

W+jets control region
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Lepton+Jets Channel (Boosted)
‣ Maintains sensitivity to resonances 

above 1 TeV through use of non-
isolated leptons, top-tagging algorithms 

‣ 1 electron or muon 
‣ At least two jets, pT > 150, 50 GeV 
‣ Can select both partially and fully 

merged hadronic top decays 
‣ Missing ET 

‣ Events categorized based on number of 
CMS top-tagged jets and number of b-
tagged jets 
‣ Mistag rate determined from  

W+jets control region 

‣ Signal regions have high top purity
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All-Hadronic Channel
‣ Two selections for optimization across mass range: 
‣ Low mass — two R = 1.5 jets, pT > 200 GeV, HEP top-tagged 
‣ High mass — two R = 0.8 jets, pT > 400 GeV, CMS top-tagged 

‣ Main background is QCD multijet production 
‣ Reduced through use of subjet b-tagging 
‣ Determined by inverting top-tagging algorithm requirements 
‣ Measure rate in QCD dijet events in data 
‣ Parameterized as function of jet pT, N-subjettiness value, b-tag score 
‣ Validated through closure test
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All-Hadronic Channel
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‣ Two selections for optimization across mass range: 
‣ Low mass — two R = 1.5 jets, pT > 200 GeV, HEP top-tagged 
‣ High mass — two R = 0.8 jets, pT > 400 GeV, CMS top-tagged 

‣ Main background is QCD multijet production 
‣ Reduced through use of subjet b-tagging 
‣ Determined by inverting top-tagging algorithm requirements 
‣ Measure rate in QCD dijet events in data 
‣ Parameterized as function of jet pT, N-subjettiness value, b-tag score 
‣ Validated through closure test



All-Hadronic Channel
‣ Events divided based on number of subjet b-tags, HT, and jet rapidity difference
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Sensitivity
‣ Boosted analysis selections critical for high-mass regime!
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Results
‣ We observe no significant deviations 

from the expected SM and set limits on 
three physics models: 
‣ Generic Z’ resonance  

(1%, 10% width) 
‣ Randall-Sundrum KK gluon  

(~16% width) 

‣ Observed limits exclude masses  
up to 2.9 TeV!
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Conclusions
‣ We performed a search for heavy 

resonances decaying to top quark pairs 
‣ Combination of several event 

topologies 

‣ Critical reliance on specialized object 
reconstruction methods 
‣ Lepton (non-)isolation 
‣ Top-tagging algorithms 

‣ No deviation from SM expectation is 
observed, we exclude masses up to 2.4 
to 2.9 TeV depending on physics model 

‣ Results available, paper submitted to 
PRD 
‣ http://arxiv.org/abs/1506.03062 
‣ CMS-B2G-13-008 

‣ We look forward to what Run 2 holds 
for this search 
‣ Thank you for your attention!
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Backup Material
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CMS Top Tagger
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Example: CMS Top Tagger decomposition

Example CMS Top Tagger primary decomposition

Decluster

ΔR(A,B) > 
adjacency 
criterion

Cluster B
Cluster A

B is too soft. 
Remove it.

⇒ continue

Cluster B
Cluster A

Cluster A
Cluster B

Decluster 
againCluster A

Cluster B

A and B pass 
adjacency and  

momentum
 fraction criteria

Primary 
decomposition 

succeeds

Primary decomposition

Cluster A
Cluster B

Secondary decomposition

À

À`

B`
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À

À`

B

Individually 
decluster A 

and B
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HEP Top Tagger
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HEP Top Tagger details
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James Dolen

Mass drop 
decomposition

Step 1:

James Dolen 18

Repeat reclustering and filtering procedure for all combinations of 3 
mass drop subjets

Step 5:

James Dolen

Loop over all 
combinations of 

3 mass drop 
subjets

Step 2:

James Dolen 16

ΔRmin

Recluster with 
Rfilt=min(0.3,ΔRmin/2) 

Step 3:

James Dolen 17

Filtering: keep only 
the 5 leading 

subjets

Step 4:

James Dolen 19

Pick the combination 
with filtered mass 

closest to the top mass. 
Recluster to force 3 

subjets

Step 6:

James Dolen JetMET Algorithms and Reconstruction Meeting - Jan 17, 2013 1

Save output 
subjet

yes

Input 
cluster

Is input 
mass < 30?

no

Save output 
subjet

no
Does input 

have 2 
parent 

clusters?

yes

Split 
input into 
2 parent 
clusters

Subjet 1 Subjet 2

no

m1 < 0.8 minput  ?

yesm1>m2

Remove 
subjet 2

HEP Top Tagger 
Mass drop decomposition



HEP Top Tagger
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N-Subjettiness
‣ A measure of the consistency of jet 

constituents with N number of subjets

22

4 3 Reconstruction of top jets

successfully decomposed then the jet has four subjets. If the secondary decomposition succeeds
on one subcluster and fails on the other, than this jet has three subjets.

The following variables, defined for each jet passing the algorithm, can be used to tag top jets:

• Jet Mass mjet - The mass of the four-vector sum of the constituents of the hard jet.
• Number of Subjets Nsubjets - The number of subjets found by the algorithm.
• Minimum Pairwise Mass mmin - The three highest pT subjets are taken pairwise,

and the invariant mass of each pair is calculated via
mij =

q
(Ei + Ej)2 � (~pi + ~pj)2. mmin is the mass of the pair with the lowest invariant

mass (mmin = min[m12, m13, m23]). This variable is not defined for jets with less than
three subjets.

Jets that have mass close to the top mass, at least three subjets, and minimum pairwise mass
close to the W mass are tagged as top jets. Only jets with a transverse momentum greater
than 350 GeV/c are considered, as at lower momenta the decay products of the hadronically
decaying top are not expected to be merged in one single jet with a distance parameter of
R = 0.8.

3.2 N-subjettiness

N-subjettiness is a jet shape variable designed to measure how consistent a jet is with a hypoth-
esis of having N subjets [4][5]. The N-subjettiness jet shape variable is defined by:

tN =
Ânconstituents

i=1 pT,i min{DR1,i, DR2,i, ..., DRN,i}
Ânconstituents

i=1 pT,iR
(3)

Here N represents the number of subjets in the hypothesis being tested. The summation runs
over all particle flow jet constituents (”i”). pT,i is the transverse momentum of constituent i. The
quantity min{DR1,i, ..., DRN,i} is the minimum of the DR distances between the ith constituent
and each subjet axis in the hypothesis. R is the jet distance parameter. The denominator is a
normalization factor to ensure 0 < tN < 1.

The tN variable is therefore the pT weighted sum of the angular separation between each jet
constituent and the closest subjet axis. Small values of tN represent jets which are consistent
with having N or fewer subjets. In this case the jet constituents are closely aligned with the
subjet axes. Subjet axes are determined by a one-pass optimization procedure which minimizes
tN[5].

N-subjettiness becomes a more effective discriminator by taking the ratio of jet shapes: tN/tN�1.
A top jet is expected to have 3 subjets and thus t3/t2 provides powerful top jet discrimination.

Selecting jets based on their N-subjettiness value (tN) is infrared (IR) safe [25], however select-
ing jets based on the ratio tN/tN�1 is not IR safe [25] but is calculable[26]. The t3/t2 selection
can be made IR safe by also making a cut on t2/t1 [25]. We find after tagging a top jet with the
requirement t3/t2 < 0.55, additionally requiring t2/t1 > 0.1 is close to 100% efficient for both
signal and background jets and provides IR safety.

3.3 HEP top-tagging algorithm

The HEP Top Tagger uses a collection of Cambridge/Aachen jets with a distance parameter
R = 1.5 (‘fat jets’). To identify top jets with the HEP Top Tagger algorithm [3], the following

J. Thaler, K Van Tilburg 
arXiv:1011.2268

arXiv:1011.2268



Other Models Results
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Systematics
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Likelihood Fit Results
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Cross Section Limits
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