Exascale and Exabytes:
Future directions in HEP Software and Computing

Oliver Gutsche
DPF2015 - Meeting of the Division of Particles & Fields of the American Physical Society
6. August 2015
Disclaimer

About me

- Scientist at Fermilab
 - Searching for SuperSymmetry and Dark Matter and doing Standard Model Top Physics with CMS
- Assistant Head of the Scientific Computing Division at Fermilab

Disclaimer

- Not a comprehensive review → selection of concepts and developments I think will be important for the future
- My expertise is in computing for collider experiments, there will be some bias in this talk
This talk is for you!

Grad Students

Postdocs
The Scientific Process

- Software & Computing is an integral part of the scientific process
Software is important for every step on the way to scientific results.
▪ Computing resources (Storage and Network, Processing, …) are needed for all steps
Unfair!

- Simplified picture, I forgot major software & computing areas

Lattice QCD

Accelerator Simulations

everything else I could not include …
Software
Frameworks

- Underlying infrastructure, core of the software
 - Large experiments have their own Frameworks
 - Trend: community frameworks serving several experiments or detector technologies
 - Art: common framework for neutrino and muon experiments
 - LArSoft: common framework for liquid argon TPC (LArTPC) reconstruction software
 - Gaudi: common underlying framework for ATLAS and LHCb software
 - ALFA: the new ALICE-FAIR software framework
 - …
Traditionally, HEP software is optimized for a “simple” architecture

- x86 based Linux
- Machines:
 - ≥1 CPUs with ≥1 Cores
- Shared memory
- Shared local disk space

An application uses one core and memory and local disk space

What we see: more and more cores, but less powerful individually.
New technologies: more and more cores!

- **x86-based machines: running into limitations**
 - Each application needs
 - “A lot” of memory (~2GB for LHC experiments) and corresponding bandwidth from memory to a core
 - The more cores in a single machine → the more memory and bandwidth is needed

- **New technology: GPGPU: General-purpose computing on graphics processing units**
 - Use of a graphics processing units (GPUs) optimized for parallel processing → using many cores per application
 - To perform computation traditionally handled by the central processing unit (CPU)

- **New technology: Co-Processor architectures**
 - Keyword: Intel MIC (Many Integrated Core) Architecture

- **Consequence:** We need to use more cores in parallel for our applications!
Multi-threading: frameworks

- Advantage: save memory by sharing between threads
- current state: run each event in own thread

future: run parts of events in different threads ➔ higher optimization results with even less memory usage
Thread-safe programming

- New technologies: multi-threading, GPGPU, Co-Processors
 - Require new programming skills!
 - My opinion: comparable to Fortran → C++ switch

- Multi-threaded programming needs to be done right
 - Small amounts of non-thread-safe code reduces the efficiency significantly → Amdahl’s law

- Go and learn thread-safe programming!
Storage
What is a Petabyte?

WHAT IS A PETABYTE?

TO UNDERSTAND A PETABYTE WE MUST FIRST UNDERSTAND A GIGABYTE.

1 GIGABYTE = 7 MINUTES OF HD-TV VIDEO

2 GIGABYTES = 20 YARDS OF BOOKS ON A SHELF

4.7 GIGABYTES = SIZE OF A STANDARD DVD-R

THERE ARE A MILLION GIGABYTES IN A PETABYTE

A PETABYTE IS A LOT OF DATA

1 PETABYTE = 20 MILLION FOUR-DRAWER FILING CABINETS FILLED WITH TEXT

1 PETABYTE = 13.3 YEARS OF HD-TV VIDEO

1.5 PETABYTES = SIZE OF THE 10 BILLION PHOTOS ON FACEBOOK

20 PETABYTES = THE AMOUNT OF DATA PROCESSED BY GOOGLE PER DAY

20 PETABYTES = TOTAL HARD DRIVE SPACE MANUFACTURED IN 1995

50 PETABYTES = THE ENTIRE WRITTEN WORKS OF MANKIND, FROM THE BEGINNING OF HUMAN HISTORY, IN ALL LANGUAGES
LHC schedule

- Peak luminosity
- Integrated luminosity

Run 1
- Trigger Rate: \(~500\) Hz

Run 2
- Trigger Rate: \(~1\) kHz

Run 3
- Trigger Rate: \(~1\) kHz

Run 4
- Trigger Rate: \(~7.5\) kHz

Run 5
- Trigger Rate: \(~7.5\) kHz

Run 6

HL-LHC

Luminosity [cm\(^{-2}\)s\(^{-1}\)]

Integrated luminosity [fb\(^{-1}\)]
LHC expectation data volumes

- Shown: RAW expectations
 - Derived data (RECO, Simulation): factor 8 of RAW
- LHC Run 4 is starting the exabyte era
- How do we analyze that much data in the future?
Strong networks: ESNet

The Office of Science supports:
- 27,000 Ph.D.s, graduate students, undergraduates, engineers, and technicians
- 26,000 users of open-access facilities
- 300 leading academic institutions
- 17 DOE laboratories
Distributed infrastructures and transfer systems

Example: Worldwide LHC Grid (WLCG)

Community uses various solutions to provide distributed access to data:

- Experiment specific: Atlas (Rucio), CMS (PhEDEx), …
- Shared: SAM (Neutrino and Muon experiments)

CMS transfers: more than 2 PB per week
Dynamic Data Management

- Subscription based transfer systems
 - PhEDEx (CMS) and Rucio (Atlas)
 - LHC Run 1: mostly manual operations
 - LHC Run 2: **dynamic data management**
 - Popularity is tracked per dataset
 - Replica count across sites is increased or decreased according to popularity

- Fully integrated distribution system
 - SAM (shared amongst Neutrino and Muon experiments)
 - All movement is based on requests for datasets from jobs.
 - Interfaces to storage at sites, performs cache-to-cache copies if necessary

- Data is distributed automatically for the community
Data Federations

- xrootd: remote access to files
- ALICE based on xrootd from the beginning
- CMS and Atlas deployed xrootd federations
 - AAA for CMS, FAX for Atlas
 - Allows for remote access to all files on disk at all sites
 - Use cases:
 - Fall back
 - Overflow for ~10% of all jobs
OSG StashCache

- **OSG: StashCache**
 - Bringing opportunistic storage usage to all users of OSG
 - OSG collaborators provide local disk space
 - OSG is running xrootd cache servers
 - Dynamic population of caches ➔ efficient distributed access to files
 - For users that don’t have infrastructures like CMS and Atlas
Active Archival Facility

- **HEP has the tools and experience for the **distributed exabyte scale**
 - We are “best in class” in the field of scientific data management

- **We are working with and for the whole science community**
 - To bring our expertise to everyone’s science
 - To enable everyone to manage, distribute and access their data, globally

- **Example: Fermilab’s Active Archival Facility (AAF)**
 - Provide services to other science activities to preserve integrity and availability of important and irreplaceable scientific data
 - Projects:
 - Genomic research community is archiving datasets at Fermilab’s AAF and providing access through Fermilab services to ~300 researchers all over the world
 - University of Nebraska and University of Wisconsin are setting up archival efforts with Fermilab’s AAF
Processing
New resource providers

Grid
- Virtual Organizations (VOs) of users trusted by Grid sites
- VOs get allocations ➔ **Pledges**
 - Unused allocations: opportunistic resources

Cloud
- Community Clouds - Similar trust federation to Grids
- Commercial Clouds - **Pay-As-You-Go** model
 - Strongly accounted
 - Near-infinite capacity ➔ **Elasticity**
 - Spot price market

HPC
- Researchers granted access to HPC installations
- Peer review committees award **Allocations**
 - Awards model designed for individual PIs rather than large collaborations

Trust Federation

Economic Model

Grant Allocation
Evolving the Grid

- Experiments don’t need all the resources all the time
 - Conference schedule, holiday seasons, accelerator schedules, etc.
 - Resource needs vary with time ➔ Provisioning needs to adapt
Fermilab’s HEPCloud

- Many experiments and facilities are exploring using commercial cloud providers to provision for peak
 - Examples: Atlas, CMS, STAR, NOvA, etc. / BNL, FNAL, CNAF, etc.

- Example: Fermilab’s HEPCloud
 - Provision commercial cloud resources in addition to physically owned resources
 - Transparent to the user
Open Science Grid ➜ Facilitating shared access

- Researcher use a single interface to use resources …
 - ... they own
 - ... others are willing to share
 - ... they have an allocation on
 - ... they buy from a commercial (cloud) provider

- OSG focuses on making this technically possible for Distributed High Throughput Computing
 * Operate a shared Production Infrastructure ➜ Open Facility (glideinWMS)
 * Advance a shared Software Infrastructure ➜ Open Software Stack
 * Spread knowledge across Researchers, IT professionals & Software developers ➜ Open Ecosystem
HPC & HEP

- **HTC: High Throughput Computing**
 - Independent, sequential jobs that can be individually scheduled on many different computing resources across multiple administrative boundaries(*)

- **HPC: High Performance Computing**
 - Tightly coupled parallel jobs, must execute within a particular site with low-latency interconnects(*)

- **Long history in HEP in using HPC installations**
 - Lattice QCD and Accelerator Modeling exploit the low latency interconnects successfully for a long time

- **Community effort: enable traditional HEP framework applications to run on HPC installations**
 - Example: Mira at Argonne (PowerPC, ~49k nodes each 16 cores, almost 800k cores)
 - Generating Atlas LHC Events with Algren
The Future: Exascale ➔ more cores!

<table>
<thead>
<tr>
<th>System attributes</th>
<th>NERSC</th>
<th>OLCF</th>
<th>ALCF</th>
<th>NERSC Upgrade</th>
<th>OLCF Upgrade</th>
<th>ALCF Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Installation</td>
<td>Edison</td>
<td>TITAN</td>
<td>MIRA</td>
<td>Cori 2016</td>
<td>Summit 2017-2018</td>
<td>Theta 2016</td>
</tr>
<tr>
<td>System peak (PF)</td>
<td>2.5</td>
<td>27</td>
<td>10</td>
<td>> 30</td>
<td>150</td>
<td>>8.5</td>
</tr>
<tr>
<td>Peak Power (MW)</td>
<td>2</td>
<td>9</td>
<td>4.8</td>
<td>< 3.7</td>
<td>< 10</td>
<td>1.7</td>
</tr>
<tr>
<td>Total system memory</td>
<td>357 TB</td>
<td>710 TB</td>
<td>768 TB</td>
<td>~1 PB DDR4 + High Bandwidth Memory (HBM) + 1.9PB persistent memory</td>
<td>>1.74 PB DDR4 + HBM + 2.6 PB persistent memory</td>
<td>>480 TB DDR4 + High Bandwidth Memory (HBM)</td>
</tr>
<tr>
<td>Node performance (TF)</td>
<td>0.400</td>
<td>1.452</td>
<td>0.204</td>
<td>> 3</td>
<td>> 40</td>
<td>> 3</td>
</tr>
<tr>
<td>Node processors</td>
<td>Intel Ivy Bridge</td>
<td>AMD Opteron</td>
<td>Nvidia Kepler</td>
<td>64-bit PowerPC A2</td>
<td>Intel Knights Landing many core CPUs</td>
<td>Intel Xeon Phi 480C</td>
</tr>
<tr>
<td>System size (nodes)</td>
<td>5,600 nodes</td>
<td>16,888 nodes</td>
<td>49,152 nodes</td>
<td>~3,500 nodes</td>
<td>~1,000 nodes in data partition</td>
<td>~3,500 nodes</td>
</tr>
<tr>
<td>System Interconnect</td>
<td>Aries</td>
<td>Gemini</td>
<td>5D Torus</td>
<td>Aries</td>
<td>Dual Rail EDR-IB</td>
<td>Aries</td>
</tr>
</tbody>
</table>

- Department of Energy's (DOE) Advanced Scientific Computing Research (ASCR) program plans for Exascale Era ➔ “A lot more cores!”
- Opens up exciting possibilities for HEP: in the light of significantly increasing resource needs (for example for the High Luminosity LHC)
HEP applications need a lot of memory and memory bandwidth

- Cannot have both in Exascale machines ➔ new architectures
- Requires to rethink how we design HEP applications!
Summary & Outlook
Take-home messages

- Software and Computing are integral parts of the HEP science process
 - Know the tools and their capabilities ➔ Get physics results efficiently and reliably

- Learn multi-threaded programming!!!

- Having to handle Exabytes of data is not that far off
 - Many new tools help you, both if you are working for a LHC collaboration, the Neutrino and Muon Experiment Community or any other HEP or non-HEP experiments

- Science will look different in the Exascale era
 - Commercial clouds and Exascale HPC machines will change the way when and how we do computing
Acknowledgements

- Many thanks to DPF 2015 for the invitation.

- Thanks to
 - All my colleagues who make running science software at unprecedented scales possible
 - All my colleagues who helped preparing this talk

And now:

BANANA!

No, lunch