from wires to cosmology

Mustafa Amin
with
Daniel Baumann
related work: condensed matter + cosmology

Anderson
Absence of diffusion in certain random matrices (1957)

Mello, Pereyra Kumar
Macroscopic approach to multichannel disordered wires (1987)

C. Beenakker,
Random matrix theory of quantum transport (1997)

C. Muller and D. Delande,
Disorder and interference: localization phenomena (2010)

Kofman, Linde & Starobinsky
Towards the Theory of Reheating after inflation (1997)

Traschen and Brandenberger (1997)

Zanchin, Maia, Craig & Brandenberger
Reheating in the presence of noise (1998)

Nacir, Porto, Senatore and Zaldarriaga
Dissipative effects in the effective field theory of inflation (2012)

Green
Disorder in the early universe (2015)

+ many works on particle production during and after inflation.
motivation

• **observations**: early universe is simple
 - few numbers \(n_s \sim 1, r, T_{\text{reh}}, f_{NL} \lesssim 10 \)

• **theory**: not so much …
 - many interacting fields, many scales (\(E >> \text{TeV} \))

• **calculational tools**?

• **can the simplicity/universality be emergent?**
multifield inflation/reheating

- inflation/reheating: many interacting fields
- fluctuations: coupled, non-perturbative
complexity in time: cosmology

\[\ddot{\chi}_k(\tau) + \left[k^2 + m^2_{\text{eff}}(\tau) \right] \chi_k(\tau) = 0 \]

\[m^2_{\text{eff}}(\tau) = -\frac{\ddot{a}(\tau)}{a(\tau)} + a^2(\tau)m^2_\phi + a^2(\tau)g^2(\phi(\tau) - \phi_*)^2 + \ldots \]

\[m^2_{\text{eff}}(\tau) \]
complexity in space: wires

\[\ddot{\chi}_k(\tau) + \left[k^2 + m_{\text{eff}}^2(\tau) \right] \chi_k(\tau) = 0 \quad \text{(particle production)} \]

\[\psi''(x) + \left[k^2 - V(x) \right] \psi(x) = 0 \quad \text{(Schrodinger)} \]
Anderson localization!
complexity in space — emergent simplicity

\[\psi''(x) + \left[k^2 - V(x) \right] \psi(x) = 0 \]

\[\psi(x) = e^{-x/2\xi} \]

caveat: wave function — transmission probability
Anderson Localization: chained scattering matrices

|ψ(L)⟩ = \(M_{N_s} \cdot M_{N_s-1} \cdots M_1|ψ(0)⟩\)

ψ(x) = e^{-x/2\xi}

phases are important!

caveat: wave function — transmission probability
complexity in space — Anderson localization
complexity in time — exponential particle production

\[\ddot{\chi}_k(\tau) + \left[k^2 + m_{\text{eff}}^2(\tau) \right] \chi_k(\tau) = 0 \]

\[\psi''(x) + \left[k^2 - V(x) \right] \psi(x) = 0 \]

\[\chi_k(\tau) \sim e^{\mu_k \tau/2} \]

\[\psi(x) = e^{-x/2\xi} \]

caveat: wave function — transmission probability, mode function — occupation number

MA & Baumann
occupation number performs
a drifted random walk

\[\ddot{\chi}_k(\tau) + \left[k^2 + m_{\text{eff}}^2(\tau)\right] \chi_k(\tau) = 0 \]

\[n(k, \tau) = \frac{1}{2\omega_k} (|\dot{\chi}_k|^2 + \omega_k^2 |\chi_k|^2) \]

\[m_{\text{eff}}^2(t) \]
a Fokker Planck equation for the occupation number

\[
\frac{1}{\mu_k} \frac{\partial}{\partial \tau} P(n, \tau) = \frac{\partial}{\partial n} \left[n(1 + n) \frac{\partial}{\partial n} P(n, \tau) \right]
\]

\(\mu_k\): local mean particle-production rate

analogue: mean free path

\[n(k, \tau)\]
the typical occupation number

\[\frac{1}{\mu_k} \frac{\partial}{\partial \tau} P(n, \tau) = \frac{\partial}{\partial n} \left[n(1 + n) \frac{\partial}{\partial n} P(n, \tau) \right] \]

\[\mu_k : \] local mean particle-production rate

analogue: mean free path

\[\langle n \rangle = \frac{1}{2} \left(e^{2\mu_k \tau} - 1 \right) \]

mean

\[n_{\text{typ}} = e^{\langle \ln(1 + n) \rangle} \]

most probable

\[= e^{\mu_k \tau} \]

not a fit!
many interacting fields (thick wires)

early universe: multiple interacting fields:

\[\ddot{\chi}_a + \left[k^2 \delta^b_a + \mathcal{M}^b_a(\tau) \right] \chi_b = 0 \]

\(a, b = 1, \ldots, N_f \)

real wires are not one-dimensional.
current conduction: multiple channels.
many interacting fields (thick wires)

\[\ddot{\chi}_a + \left[k^2 \delta^b_a + \mathcal{M}^b_a(\tau) \right] \chi_b = 0 \]

\[\left(\frac{N_f + 1}{2} \right) \frac{1}{\mu_k} \frac{\partial}{\partial t} P(n_a, \tau) = \sum_{a=1}^{N_f} \frac{\partial}{\partial n_a} \left[n_a (1 + n_a) J \frac{\partial}{\partial n_a} \left(J^{-1} P(n_a, \tau) \right) \right] \]

\[n = \text{Tr}[\mathbf{n}] = \sum_{a=1}^{N_f} n_a \]

exact solutions!

\[\langle n \rangle = \frac{N_f}{2} \left(e^{2\mu_k \tau} - 1 \right) \]

\[n_{\text{typ}} \rightarrow e^{\frac{2N_f}{N_f+1} \mu_k \tau} \]

most probable

MA & Baumann
simplicity/universality

\(\mu_k \) local mean particle production rate
\(N_f \) number of fields

\(l_{mf} \) mean ballistic mean free path
\(N_f \) number of channels
simplicity/universality

\(\mu_k \) local mean particle production rate
\(N_f \) number of fields

\(l_{mf} \) mean ballistic mean free path
\(N_c \) number of channels

\(\mu_k \) - calculate from ‘local” microphysics or parametrize
\(N_f \) - regimes exist where dependence vanishes

universality: regimes exist where dependence on both vanishes!
universality from Random Matrix Theory

\[n = \text{Tr}[n] = \sum_{a=1}^{N_f} n_a \]

large number of fields: \(N_f \)

large number of interactions: \(N_s \)

\(n \) is obtained from a product of \(N_s \) matrices of dimension \(N_f \) with random entries

\[M = M_{N_s-1} \cdot M_{N_s-1} \ldots M_1 \]

Random Matrix Theory

products of large number of random matrices \(MM^\dagger \)

self averaging, non-random eigenvalues

eigenvalue repulsion — largest eigenvalue dominates in \(n \)
prediction for exponential behavior!
applications
applications: reheating

reheating:
many interacting fields, non-perturbative

- **new** statistical tools (Fokker Planck + RMT)
- generalization of classic results:
applications: inflation

Nacir, Porto, Senatore, and Zaldarriaga
Green, Horn, Senatore, and Silverstein

\[\mathcal{L} = \mathcal{L}_{\text{sr}} - m^2(t + \pi) \chi^2 \]

Goldstone boson
\[\zeta = -H \pi \]

\[\left(\partial_t^2 + 3H \partial_t + \frac{k^2}{a^2} \right) \pi = \frac{dm^2}{dt} \chi^2 \]

source

\[(\chi^2)_{S} \equiv \langle \chi^2 \rangle_{\pi=0} \]

stochastic noise

\[(\chi^2)_{R} \equiv \int_{t}^{t'} dt' \; G_{\text{ret}}^{(\chi^2)}(t, t') \pi(t') \]

linear response

background dynamics

particle production

\[\langle n_{k_1} n_{k_2} \cdots \rangle \]

curvature fluctuations

\[\langle \zeta_{k_1} \zeta_{k_2} \cdots \rangle \]
summary

complex theoretical models

inflation/reheating:
many interacting fields, non-perturbative

map to disordered wire
statistical tools: Fokker Planck + Random Matrices

\[
\frac{1}{\mu_k} \frac{\partial}{\partial \tau} P(n, \tau) = \frac{\partial}{\partial n} \left[n(1+n) \frac{\partial}{\partial n} P(n, \tau) \right] \quad \mathbf{M} = \mathbf{M}_{N_s-1} \cdot \mathbf{M}_{N_s-1} \cdots \mathbf{M}_1
\]

emergent universality/simplicity

\[
n_{\text{typ}} \rightarrow e^{\frac{2N_f}{N_f+1} \mu_k \tau}
\]

could simplicity of observations hinting at emergent universality?
paper coming soon … stay tuned!

MA & Baumann
related work:
condensed matter + cosmology

Anderson
Absence of diffusion in certain random matrices
(1957)

Mello, Pereyra Kumar
Macroscopic approach to multichannel disordered wires
(1987)

C. Beenakker,
Random matrix theory of quantum transport
(1997)

C. Muller and D. Delande,
Disorder and interference: localization phenomena
(2010)

Kofman, Linde & Starobinsky
Towards the Theory of Reheating after inflation
(1997)

Traschen and Brandenberger
(1997)

Zanchin, Maia, Craig & Brandenberger
Reheating in the presence of noise
(1998)

Nacir, Porto, Senatore and Zaldarriaga
Dissipative effects in the effective field theory of inflation
(2012)

Green
Disorder in the early universe
(2015)

+ many works on particle production during and after inflation.
Extra Slides
Time-dependent Klein-Gordon

\[
\ddot{\chi}_k(\tau) + \left[k^2 + m_{\text{eff}}^2(\tau) \right] \chi_k(\tau) = 0
\]

Time-independent Schrödinger

\[
\frac{d^2\psi}{dx^2} + (E - V(x))\psi = 0
\]

Particle production

\[
\langle n \rangle = \frac{1}{2} \left(e^{2\mu_k \tau} - 1 \right)
\]

Anderson localization

\[
\langle \rho \rangle = e^{L/l}
\]

Fokker-Planck equation

\[
P(n, T)
\]

Multiple fields (Random Matrix Theory)

Fokker-Planck equation

\[
P(\rho, L)
\]

Multiple channels (Random Matrix Theory)
inflation
\[
\frac{1}{\mu_k} \frac{\partial \langle n \rangle}{\partial \tau} = N_f + 2\langle n \rangle
\]

\[
\frac{(N_f + 1)}{2} \frac{1}{\mu_k} \frac{\partial \langle n^2 \rangle}{\partial \tau} = (N_f^2 + N_f + 2)\langle n \rangle + 2(N_f + 1)\langle n^2 \rangle + 2\langle n_2 \rangle
\]

\[
\frac{(N_f + 1)}{2} \frac{1}{\mu_k} \frac{\partial \langle n_2 \rangle}{\partial \tau} = (2N_f + 2)\langle n \rangle + \langle n^2 \rangle + (2N_f + 3)\langle n_2 \rangle
\]

where \(n = \sum_{a=1}^{N_f} n_a \) and \(n_2 = \sum_{a=1}^{N_f} n_a^2 \).

exact solutions!

\[
\langle n \rangle = \frac{N_f}{2} \left(e^{+2\mu_k \tau} - 1 \right) \quad \frac{\langle \text{Var}(n) \rangle}{\langle n \rangle^2} \xrightarrow{\mu_k \tau \to \infty} \frac{N_f + 1}{3N_f} e^{+4(N_f+1)^{-1} \mu_k \tau}
\]