

Pentaquarks and Tetraquarks at LHCb

Sheldon Stone on behalf of LHCb DPF Ann Arbor, August 2015

Why pentaquarks?

- Interest in pentaquarks arises from the fact that they would be new states of matter beyond the simple quark-model picture. Could teach us a lot about QCD.
- There is no reason they should not exist
 - Predicted by Gell-Mann (64), Zweig (64), others later in context of specific QCD models: Jaffe (76), Högaasen & Sorba (78), Strottman (79)
- These would be short-lived ~10⁻²³ s "resonances" whose presence is detected by mass peaks & angular distributions showing the presence of unique J^P quantum numbers

Prejudices

- No convincing states 51 years after Gell-mann &
 Zweig proposed qqq and qqqqq baryonic states
- Previous "observations" of several pentaquark states have been refuted
- These included
 - □ Θ^+ → K^0 p, K^+ n, mass=1.54 GeV, Γ ~10 MeV
 - Resonance in D*⁻p at 3.10 GeV, Γ=12 MeV
 - \blacksquare $\Xi^{--} \rightarrow \Xi^{-} \pi^{-}$, mass=1.862 GeV, Γ <18 MeV
- Generally they were found/debunked by looking for "bumps" in mass spectra circa 2004 [see Hicks Eur. Phys. J. H37 (2012) 1.]

$\Lambda_b \rightarrow J/\psi K^- p$

7000 ± 6000

5000 the second

3000

2000

1000 E

5500

LHCb

26,000 signal

+ 5.4% bkgrnd

of peak

5600

within ±2σ

5700

 First looked for in LHCb as a potential background for B⁰→J/ψK⁺K⁻

Large signal found, used

for Λ_b lifetime

showed an

unusual

feature

[arXiv:1507.03414]

m(J/ψK⁻p) [MeV]

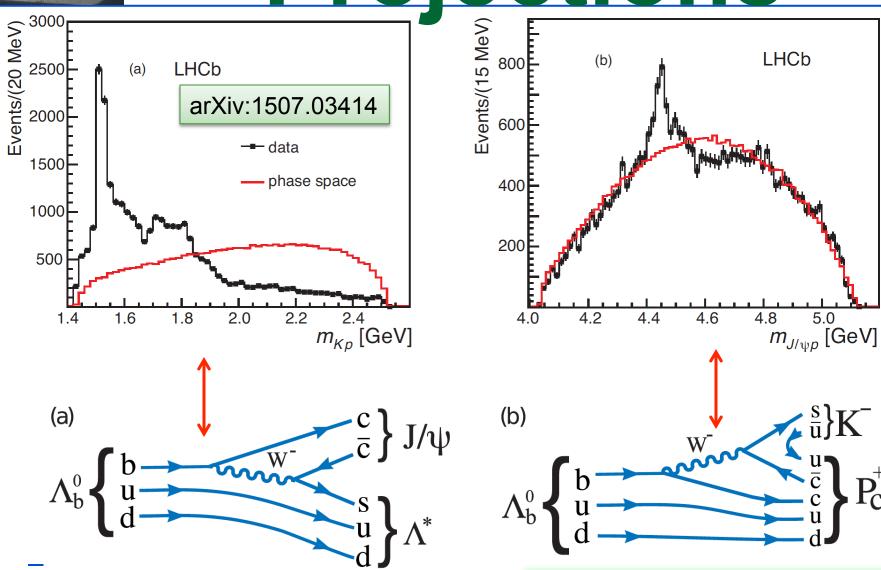
26

LHCb

24

20

18


16

2 3 4 m²(K⁻p) [GeV²]

DPF Ann Arbor, August 2015

Projections

DPF Ann Arbor, August 2015

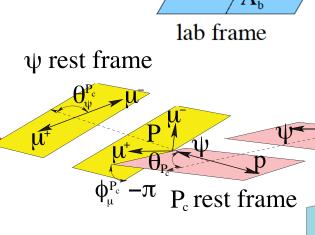
Does this diagram exist?

Decay amplitude analysis

- Are there "artifacts" that can produce a peak?
 - □ Many checks done that shows this is not the case: e.g. changing p to K, or π to K allows us to veto misidentified $B_s \rightarrow J/\psi K^-K^+$ & $B^0 \rightarrow J/\psi K^-\pi^+$
 - Clones & ghost tracks eliminated
 - \blacksquare $\Xi_{\rm h}$ decays checked as a source
- Can interferences between Λ* resonances generate a peak in the J/ψp mass spectra?
 - Implemented a decay amplitude analysis that incorporates both decay sequences:

Matrix Element

Two interfering channels:

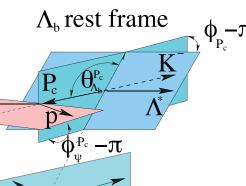

$$\Lambda_b \rightarrow J/\psi \Lambda^*,$$

 $\Lambda^* \rightarrow K^-p$

$$\Lambda_b \rightarrow P_c^+ K^-,$$

 $P_c^+ \rightarrow J/\psi p$

Use m(K⁻p) & 5 decay ∠'s as fit parameters


ψ rest frame

 ϕ_{Λ_b} ϕ_{K}

 Λ_b rest frame $\phi_{\Lambda} = 0$

 Λ^* rest frame

lab frame

Mass shapes: Breit-Wigner or Flatte

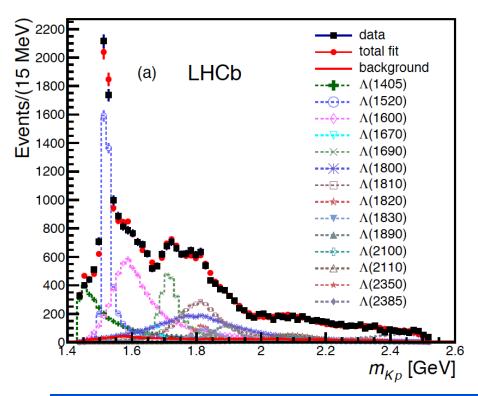
Models: extended & reduced

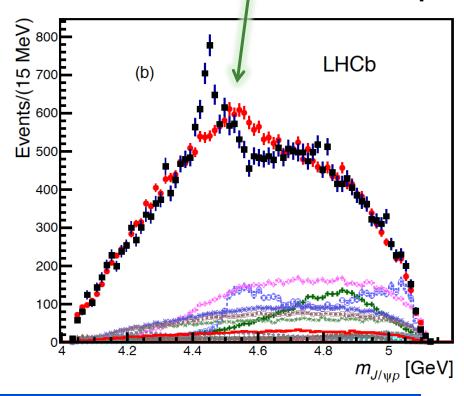
■ Consider all Λ^* states & all allowed L values

-	State	J^P	$M_0 \text{ (MeV)}$	$\Gamma_0 \; ({\rm MeV})$	# Reduced	# Extended
Flatte	$\Lambda(1405)$	1/2-	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
BW	$\Lambda(1520)$	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0	5	6
\downarrow	$\Lambda(1600)$	$1/2^{+}$	1600	150	3	4
	$\Lambda(1670)$	$1/2^{-}$	1670	35	3	4
	$\Lambda(1690)$	$3/2^{-}$	1690	60	5	6
	$\Lambda(1800)$	$1/2^{-}$	1800	300	4	4
	$\Lambda(1810)$	$1/2^{+}$	1810	150	3	4
	$\Lambda(1820)$	$5/2^{+}$	1820	80	1	6
	$\Lambda(1830)$	$5/2^{-}$	1830	95	1	6
	$\Lambda(1890)$	$3/2^{+}$	1890	100	3	6
	$\Lambda(2100)$	$7/2^{-}$	2100	200	1	6
	$\Lambda(2110)$	$5/2^{+}$	2110	200	1	6
	$\Lambda(2350)$	$9/2^{+}$	2350	150	0	6
	$\Lambda(2585)$?	≈ 2585	200	0	6

DPF Ann Arbor, August 2015

parameters 64

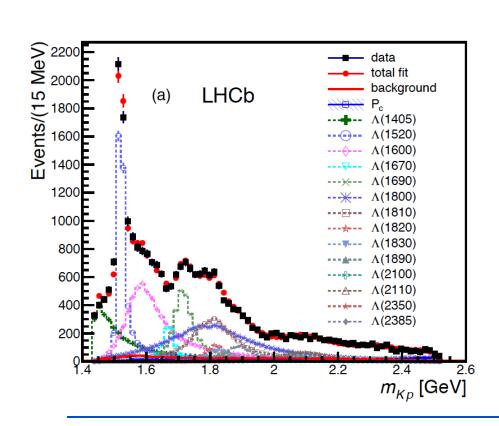

146

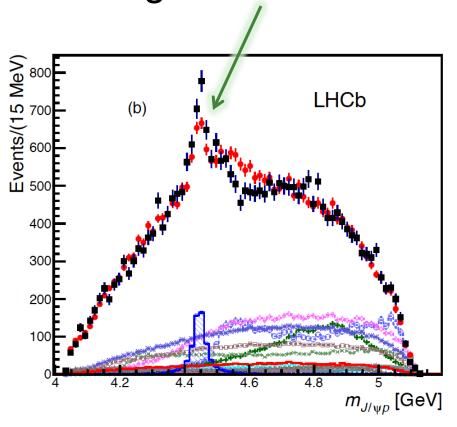


Results without P_c states

• Use extended model, so all possible known Λ^* amplitudes. m_{Kp} looks fine, but not $m_{J/\psi p}$

- Additions of non-resonant, extra Λ^* 's dbesn't help

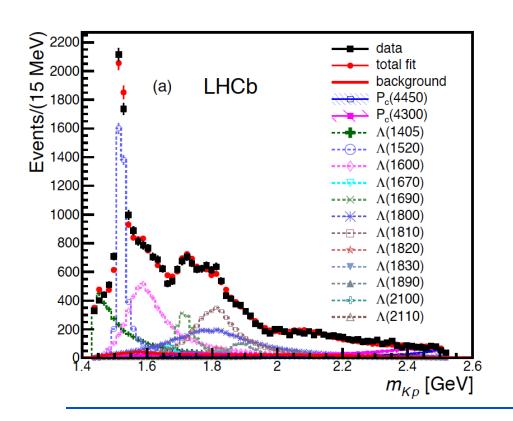


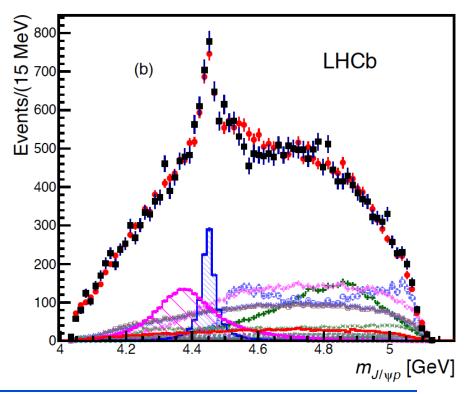


Extended model with 1 P_c

■ Try all J^P up to 7/2[±]

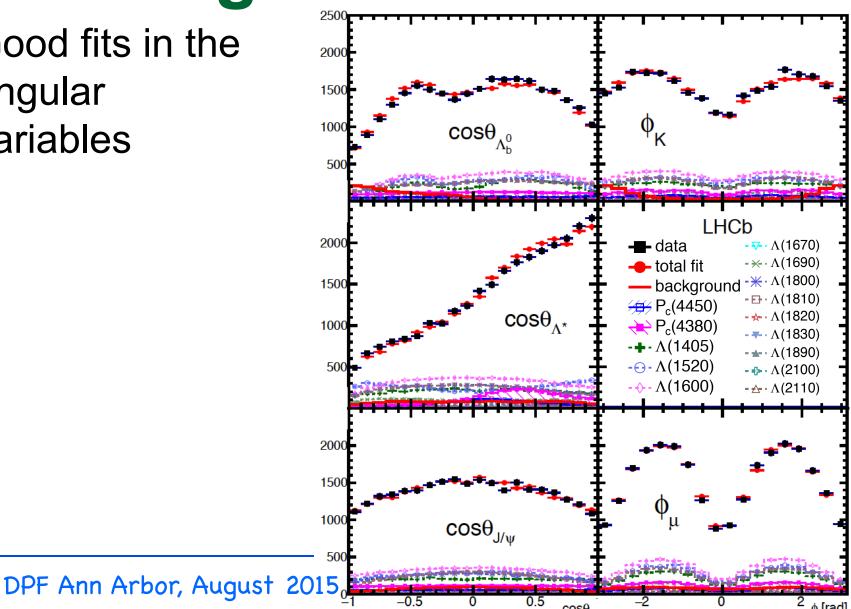
■ Best fit has J^P =5/2[±]. Still not a good fit

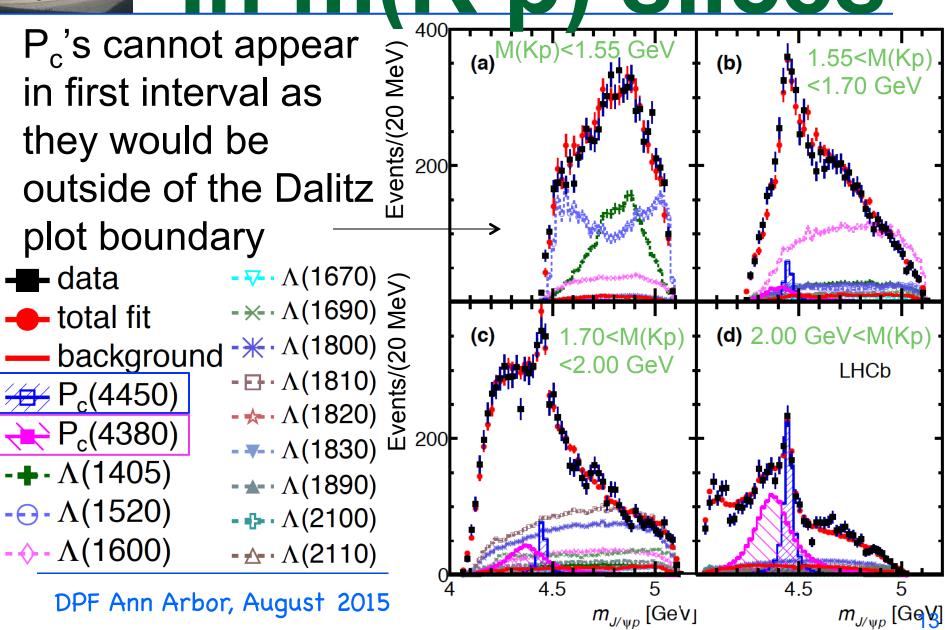




Reduced model with 2 P_c's

Best fit has J^P=(3/2⁻, 5/2⁺), also (3/2⁺, 5/2⁻) & (5/2⁺, 3/2⁻) are preferred




Angular distributions

Good fits in the angular variables

In m(K⁻p) slices

Significances

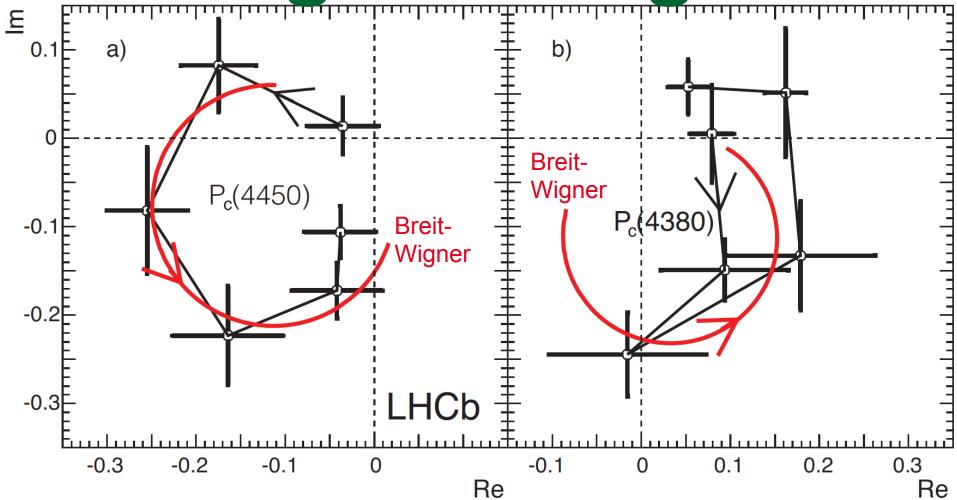
- Fit improves greatly, for $1 P_c \Delta(-2 \ln \mathcal{L})=14.7^2$, adding the $2^{nd} P_c$ improves by 11.6^2 , for adding both together $\Delta(-2 \ln \mathcal{L})=18.7^2$
- Using toy simulations 1st state has significance of 9σ & 2nd state 12σ, including systematic uncertainties, coming from difference between extended & reduced model results.

Fit results

Mass (MeV)	Width (MeV)	Fit fraction (%)
4380±8±29	205±18±86	8.4±0.7±4.2
4449.8±1.7±2.5	39±5±19	4.1±0.5±1.1
Λ(1405)		15±1±6
Λ(1520)		19±1±4

Systematic uncertainties

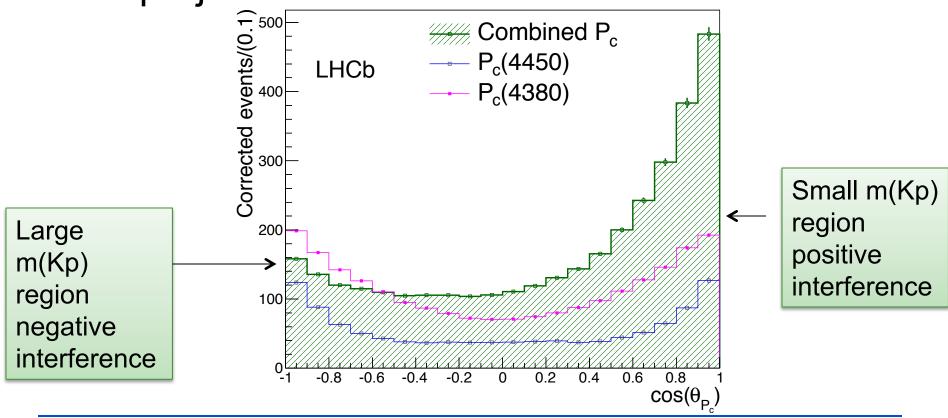
Source	M_0	$\overline{(\mathrm{MeV})}$	Γ_0 (MeV)		Fit	fractions (%)
	low	high	low	high	low	high	$\Lambda(1405)$	$\Lambda(1520)$
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
Λ^* masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID		0.3	1	2	0.27	0.14	0.20	0.05
$10 < p_p < 100 \text{ GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01
Nonresonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
$J^P (3/2^+, 5/2^-) \text{ or } (5/2^+, 3/2^-)$	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 \text{ GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L_{\Lambda_b^0}^{P_c} \Lambda_b^0 \to P_c^+ (\text{low/high}) K^-$	6	0.7	4	8	0.37	0.16		
$L_{P_c}^{0} P_c^{+} (\text{low/high}) \to J/\psi p$	4	0.4	31	7	0.63	0.37		
$L_{\Lambda_b^0}^{\Lambda_n^*} \Lambda_b^0 \to J/\psi \Lambda^*$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check		1.0	11	3	0.46	0.01	0.45	0.13



Cross-checks

- Many done, some listed here:
- Signal found using different selections by others
- Two independently coded fitters using different background subtractions (sFit & cFit)
- Split data shows consistency: 2011/2012, magnet up/down, $\overline{\Lambda}_b/\Lambda_b$, $\Lambda_b(p_T low)/\Lambda_b(p_T high)$
- Extended model fits tried without P_c states, but two additional high mass Λ^* resonances allowing masses & widths to vary, or 4 non-resonant terms of J up to 3/2

Argand diagrams



Amplitudes for 6 bins between +Γ & -Γ

Data demands 2 states

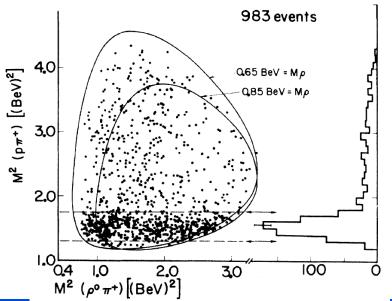
- Interference between opposite parity states needed to explain P_c decay angle distribution
- Fit projections

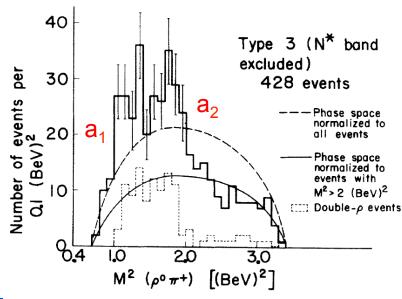
Pentaquark models

- All models must explain J^P of two states not just one. They also should predict properties of other states: masses, widths, J^P. Many models: Lets start with tightly bound quarks ala' Jaffe
 - Two colored diquarks plus the anti-quark, L.Maiani, et. al, [arXiv:1507.04980], ibid [PRD20(1979) 748]
 - Colored diquark + colored triquark, R. Lebed [arXiv: 1507.05867]
 - Bag model, Jaffe; Strings, Rossi & Veneziano [Nucl. Phys. B123 (1977) 507]

Molecular models

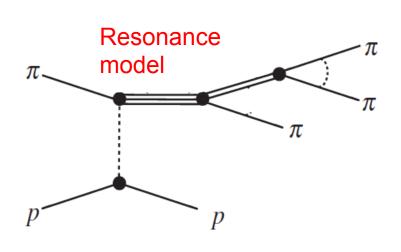
- Molecular models, generally with meson exchange for binding
- **ala' Törnqvist** [Z. Phys. C61 (1994) 525]
- π exchange models usually predict only one state, mainly J^P=1/2+, but could also include ρ exchange...
- Several authors consider Σ_c D^(*) components (most of these are postdictions)

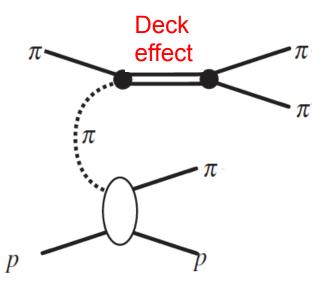

Rescattering


- These are all postdictions
- They construct non-BW amplitude that must mimic mass shape & phase variation of a BW
- eg. $\Lambda_b \rightarrow XY(Z) \rightarrow J/\psi p K^-$, especially when m(XY)=m(P_c), hence the word "cusp"
- These models have so far not predicted the size of the rescattering amplitude
- Also difficult to predict two states...

Some History: The a₁

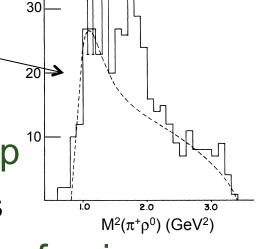
- Is it possible for other processes to mimic resonant effects?
- Example: The Deck effect, a lesson in confusion: π⁺p→π⁺ρ⁰p, ρ⁰→π⁺π⁻, using a 3.65 GeV π⁺ beam, G. Goldhaber et. al, PRL 12, 336 (1964)





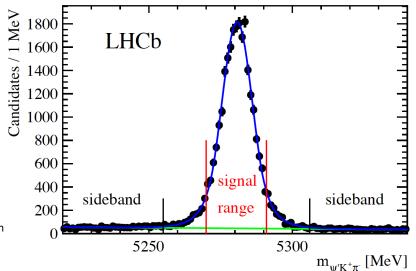
"Kinematical" effect

- Clear enhancement near threshold. Is it a new resonance as suggested in original paper?
- Theorists, first Deck, suggest that the threshold enhancement can be due to off shell πp scattering R.T. Deck, PRL 13, 169 (1964)



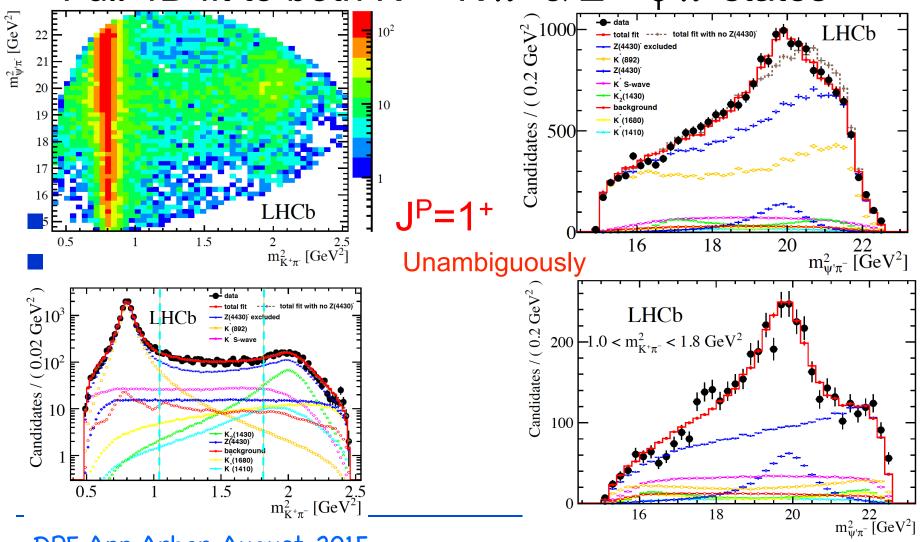
Deck Effect

- Deck's fit to data can provide adequate explanation
- a₁ then seen in different charge states
 & different channels, e.g. K⁺p→K⁺π⁺π⁻π⁰ p
- Many more sophisticated theory papers
- Controversy continued until observation of a₁ in τ-→π⁺π⁻π⁻ν decays, ~1977
- Surmises: a full amplitude analysis may have proved the resonant nature of the a₁ earlier. Important to see resonant states in several ways. There never was an unambiguous demonstration of the Deck effect.



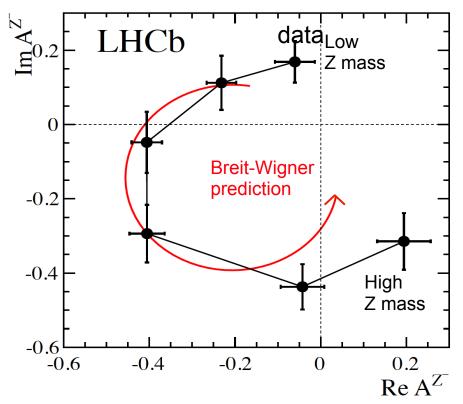
Z(4430)+ tetraquark

- B⁰→ψ´π⁻K⁺, peak in m(ψ´π⁻), charged charmonium state must be exotic, not qq̄
 - First observed by Belle M=4433±5 MeV, Γ=45 MeV
 - Challenged by BaBar: explanation in terms of K*'s
 - Belle reanalysis using full amplitude fit:
 M= 4485 ± 22⁺²⁸₋₁₁ MeV, Γ=200 MeV, 1+ preferred but 0 & 1- not excluded [arXiv:1306.4894]
- LHCb analysis also uses to leave the full amplitude fit
 - \square M= 4475 ± 7^{+15}_{-25} MeV
 - Γ =172 MeV [arXiv:1404.1903]


see also I HCh-PAPER-2015-038 in preparation

LHCb Amplitude analysis

■ Full 4D fit to both $K^* \rightarrow K^- \pi^+ \& Z \rightarrow \psi' \pi^-$ states



DPF Ann Arbor, August 2015

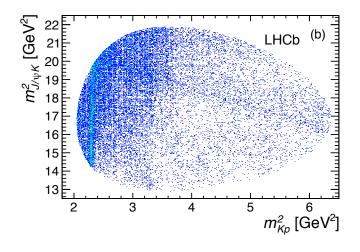
Is it a resonance?

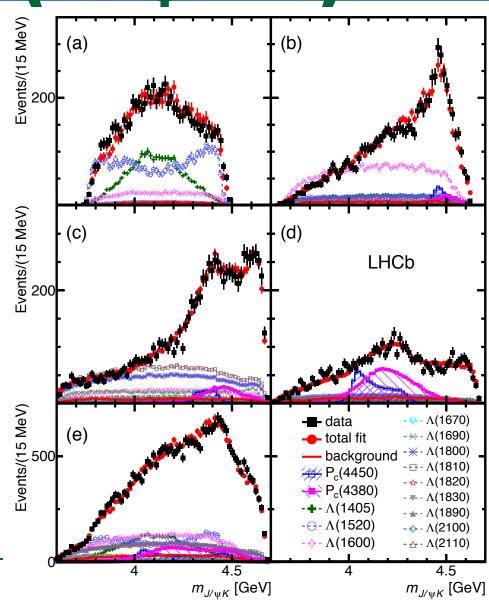
- LHCb produced an Argand plot that shows a clear & large phase change
- There are also attempts at rescattering explanations

Conclusions

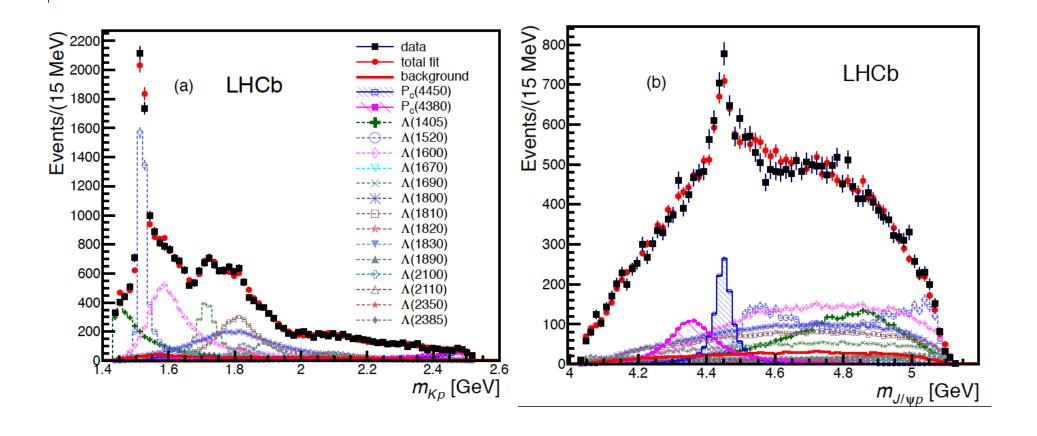
- LHCb has found two resonances decaying into J/ψp with pentaquark content of uudcc arXiv:1507.03414.
- Determination of their internal binding mechanism will require more study. The preferred J^P are (3/2⁻,5/2⁺), (3/2⁺, 5/2⁻) or (5/2⁺, 3/2⁻)
- Other exotic states have appeared containing cc̄ quarks: the Z⁺(4430)→ψ K⁻π⁺ appears to be a tetraquark with J^P=1⁺. Is binding stronger for cc̄?
- Lattice QCD calculations providing masses would be most welcome
- We look forward to establishing the structure of many other states

See parallel session talk of Nathan Jurik for more details


US LHCb groups gratefully acknowledge support from the NSF



$m(J/\psi K^{-})$

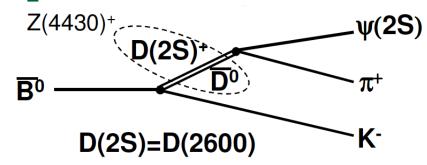

Our fit explains m(J/ψ K⁻)

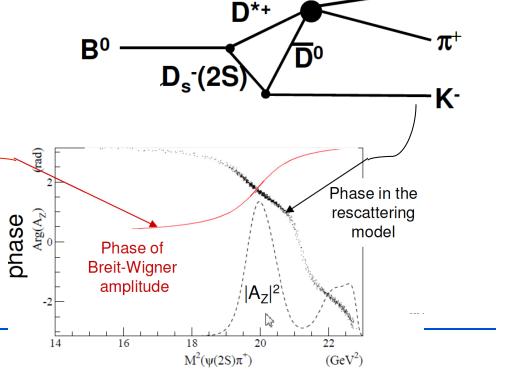
Extended model with 2 P_c's

Other Explanations

- Molecule:
- L. Ma et.al, [arXiv:1404.3450]
- T. Barnes et.al, [arXiv:1409.6651
- Same scattering phase

as Breit-Wigner


Rescattering:


P. Pakhov & T. Uglov [arXiv:1408:5295]

Opposite phase

Ruled out by LHCb

Argand diagram

 $\psi(2S)$