Flavor Tagging TeV Jets for BSM and QCD

Keith Pedersen

(kpeders1@hawk.iit.edu)

In collaboration with **Zack Sullivan**To appear in arXiv:1508.xxxxx

Z' Models

- One of the simplest BSM models is an additional U(1) symmetry, mediated by a neutral heavy boson (Z').
 - Experiments don't see heavy resonance in dilepton channels what if the Z' is "leptophobic"?
 - Dijets are discovery channel!

Z' Models

- One of the simplest BSM models is an additional U(1) symmetry, mediated by a neutral heavy boson (Z').
 - Experiments don't see heavy resonance in dilepton channels what if the Z' is "leptophobic"?
 - Dijets are discovery channel!
- Dobrescu and Yu [arXiv:1306.2629 and 1506.04435] outline simple, renormalizable, leptophobic Z_{B}^{\prime}
 - No tree-level couplings to SM leptons and bosons, only SM quarks are charged. This implies association with *baryon* number *B*.
 - Coupling to quarks is flavor independent,
 - $\frac{1}{6}g_B Z'_{B\mu} \bar{q} \gamma^\mu q$
 - Narrow width:
 - $\Gamma_{Z'}/M_{Z'} pprox rac{1}{6} lpha_B \left(1 + rac{lpha_S}{\pi}\right) pprox 1-5\%$ (depending on g_B)
 - Model needs vector-like fermions (anomalons); we assume they're "kinematically inaccessible".

Z' Dijet Searches

- Dijet search gives lots of data, but
 - Strong QCD BG (all quarks are "massless" at 2 TeV).
 - Precise reconstructing of radiation and tt
 uses wide jets ... pileup smears mass resolution.

- Wide jets (R = 1.1)
- $\bullet \left| \eta_{jet} \right| \leq 2.5, \left| \Delta \eta_{jj} \right| \leq 1.3$

Z' Dijet Searches

- Dijet search gives lots of data, but
 - Strong QCD BG (all quarks are "massless" at 2 TeV).
 - Precise reconstructing of radiation and tt
 uses wide jets ... pileup smears mass resolution.
- Leading processes at α^2 ?
 - Z': $q\bar{q} \stackrel{s}{\rightarrow} q'\bar{q}'$
 - QCD heavy dijets (cbt):

$$gg \xrightarrow{t} q\bar{q} \mid q\bar{q} \xrightarrow{s} q'\bar{q}'$$

• QCD light dijets (dusg): $gq \xrightarrow{t} gq \mid q\bar{q} \xrightarrow{t} q\bar{q} \mid gg \xrightarrow{s} gg$

- Wide jets (R = 1.1)
- $\left|\eta_{jet}\right| \leq 2.5$, $\left|\Delta\eta_{jj}\right| \leq 1.3$

Z' Dijet Searches

- Dijet search gives lots of data, but
 - Strong QCD BG (all quarks are "massless" at 2 TeV).
 - Precise reconstructing of radiation and tt
 uses wide jets ... pileup smears mass resolution.
- Leading processes at α^2 ?
 - Z': $q\bar{q} \stackrel{s}{\rightarrow} q'\bar{q}'$
 - QCD heavy dijets (cbt): $gg \xrightarrow{t} q\bar{q} \mid q\bar{q} \xrightarrow{s} q'\bar{q}'$
 - QCD light dijets (dusg): $gq \xrightarrow{t} gq \mid q\bar{q} \xrightarrow{t} q\bar{q} \mid gg \xrightarrow{s} gg$
- $\frac{S}{\sqrt{BG}} \approx \frac{Z'}{\sqrt{\text{QCD light}}}$
 - Tag b/c-jets to drive down light-jet QCD BG!

- Wide jets (R = 1.1)
- $\left|\eta_{jet}\right| \leq 2.5, \left|\Delta\eta_{jj}\right| \leq 1.3$

Track-based b-tag

- b-hadrons have long lifetimes and decay at a secondary vertex (SV).
 Use tracks to find an SV inside a jet.
 - High efficiency for *b*-jets (.5-.8).
 - Also tag **charm** and **light** jets.

Track-based b-tag

- b-hadrons have long lifetimes and decay at a secondary vertex (SV).
 Use tracks to find an SV inside a jet.
 - High efficiency for *b*-jets (.5-.8).
 - Also tag charm and light jets.
- Probability to tag light jets increases severely as jet p_T approaches TeV.
 - 10^{-3} at 100 GeV $\rightarrow 10^{-1}$ at 1 TeV

- Resolving SV inside high p_T jets is *limited by tracking performance*.
 - Tracks have higher p_T and bend less harder to constrain.
 - Tracks are more collimated increased sensitivity to tracker resolution.
 - Dense tracking environment fake tracks and false duplicates.
- ullet Gluons split (g o bar b) more often at high p_T light flavor BG!

Muon-based b-tag

- b/c-hadrons frequently decay semi-leptonically (where $I \in \{e, \mu\}$):
 - BR $(b \rightarrow l\nu_l X) \approx 11\%$
 - BR $(c \rightarrow l\nu_l X) \approx 10\%$
 - 20% of *b*-jets have $N_{muon} \ge 1$
- Hard to see electrons inside jets; we're lucky that someone ordered the muon chamber!

- The angle muons make with boost axis of mother should be larger if its mother had a high mass (and thus a heavy flavor).
 - Look at p_T^{rel} (muon momentum transverse to the centroid of its jet)
 - p_T^{rel} loses efficiency for boosted decays because the centroid of the entire jet is too coarse a measure – need subjet of decay.

• CM: Muon is emitted with $\gamma_{\mu, \rm cm}$ at angle $\theta_{\rm cm}$ w.r.t. the boost axis.

- CM: Muon is emitted with $\gamma_{\mu, \rm cm}$ at angle $\theta_{\rm cm}$ w.r.t. the boost axis.
- Lab: Muon is detected at angle $\theta_{\rm lab}$ w.r.t. the centroid of the subjet (which has boost $\gamma_{\rm B}$).
 - Define $\kappa \equiv \beta_{\rm B}/\beta_{\mu,{\rm cm}}$

- CM: Muon is emitted with $\gamma_{\mu, \rm cm}$ at angle $\theta_{\rm cm}$ w.r.t. the boost axis.
- Lab: Muon is detected at angle $\theta_{\rm lab}$ w.r.t. the centroid of the subjet (which has boost $\gamma_{\rm B}$).
 - Define $\kappa \equiv \beta_{\rm B}/\beta_{\mu,\rm cm}$

$$x \equiv \gamma_{
m B} \, an(heta_{
m lab}) = rac{\sin(heta_{
m cm})}{\kappa + \cos(heta_{
m cm})} \quad (1)$$

- CM: Muon is emitted with $\gamma_{\mu, \rm cm}$ at angle $\theta_{\rm cm}$ w.r.t. the boost axis.
- Lab: Muon is detected at angle $\theta_{\rm lab}$ w.r.t. the centroid of the subjet (which has boost $\gamma_{\rm B}$).
 - Define $\kappa \equiv \beta_{\rm B}/\beta_{\mu,\rm cm}$

$$x \equiv \gamma_{
m B} \, an(heta_{
m lab}) = rac{\sin(heta_{
m cm})}{\kappa + \cos(heta_{
m cm})} \quad (1$$

$$x \approx \tan(\theta_{\rm cm}/2)$$
 (when $\kappa \approx 1$) (2)

- CM: Muon is emitted with $\gamma_{\mu, \rm cm}$ at angle $\theta_{\rm cm}$ w.r.t. the boost axis.
- Lab: Muon is detected at angle $\theta_{\rm lab}$ w.r.t. the centroid of the subjet (which has boost $\gamma_{\rm B}$).
 - Define $\kappa \equiv \beta_{\rm B}/\beta_{\mu,{\rm cm}}$

$$x \equiv \gamma_{
m B} \, an(heta_{
m lab}) = rac{\sin(heta_{
m cm})}{\kappa + \cos(heta_{
m cm})} \quad (1)$$

$$x \approx \tan(\theta_{\rm cm}/2)$$
 (when $\kappa \approx 1$) (2)

$$\frac{dN}{dx} = 4\pi \frac{2x}{(x^2 + 1)^2} K(x, \kappa) \quad \text{(when } \gamma_{\text{B}} \gg \gamma_{\mu, \text{cm}} \to \kappa > 1)$$
 (3)

x Marks the Heavy Flavor tag

• We can calculate the **lab frame** region $[0, x_{\delta}]$ which captures $(1 - \delta)$ of the CM emission. It's not pretty

$$x_{\delta} = \sqrt{\frac{1 - \kappa^2 - 2\delta^2 + \sqrt{(\kappa^2 - 1)^2 + 4\kappa^2 \delta^2}}{2\delta^2}}$$
 (4)

- Taking the limit as $\delta \to 0$ gives $x_{\rm max} = 1/\sqrt{\kappa^2 1}$.
- More important is the region which captures 90% of emitted muons

$$x_{90\%} \approx 3\left(1 - \frac{5}{2}\gamma_{\mu,\text{cm}}^{-2}\right) \approx 3$$
 (5)

- If you find a muon in a jet, ask:
 - "Is the muon consistent with a *very boosted emission* from the jet's **primary hadron** (i.e. is $x \le x_{90\%}$)?"
- If so, use the muon to tag the jet this is the μ_{\times} tag.

Testing dN/dx

- Muons restricted to $x_{\rm max}$, defined by $\gamma_{\mu,{\rm cm}}$.
- K(x,κ) corrects for muon speed; small corrections for ultra-relativistic muons.

Testing dN/dx

- Muons restricted to x_{max} , defined by $\gamma_{u,\text{cm}}$.
- K(x, κ) corrects for muon speed; small corrections for ultra-relativistic muons.

- Exact: Integrate over $\gamma_{\mu, {\rm cm}}$ and distribute asymptote.
- Approximate: apply cut-off function to asymptotic $\frac{d\Omega}{d\log x}$

•
$$\frac{2x^2}{(x^2+1)^2} \times C \frac{(1+\exp(-bx_0))}{(1+\exp(b(x-x_0)))}$$

Measuring x

$$\mathsf{p}_{\mathrm{subjet}} = \mathsf{p}_{\mu} + \mathsf{p}_{\mathrm{core}} + \mathsf{p}_{
u_{\mu}}$$

- Require **muons** to pass $p_{T,\mu}^{\min}$ (we use 10 GeV).
 - Allow them to participate in initial jet clustering (hard muon seeds).
- Isolate subjet's hadronic/EM energy (the core).
 - Re-cluster jets to find extremely thin core:
 - $R \approx 1/\gamma = \mathcal{O}$ (.01) (larger in practice)
 - \bullet $\gamma_{\rm subjet}$ needs mass of core very poorly measured.
 - Constrain mass to best guess (e.g. $m_{D^{\pm}/D^{0}} \approx 2$ GeV).
 - Choose core which gets subjet mass closest to $m_{B^{\pm}/B^{0}} \approx 5.3$ GeV.
- Subjet's neutrino:
 - System is under-determined. Simplest estimate: add muon again to simulate neutrino.

What is μ_{x} Doing?

$$m_{
m subjet} pprox \sqrt{m_{
m core}^2 + 4E_{
m core}E_{\mu}\left(1-\cos\left(heta_{
m lab}
ight)
ight)}$$
 (6)

$$x \approx \frac{E_{\rm core} + 2E_{\mu}}{\min\left(m_{\rm subjet}, m_{\rm subjet}^{\rm max}\right)} \tan\left(\theta_{\rm lab}\right) \tag{7}$$

- When $\theta_{\rm lab}$ begins to be dominate $m_{\rm subjet}$, x flattens. If E_{μ} is also large, it pushes the plateau below $x_{\rm max}$ any $\theta_{\rm lab}$ causes tag.
- Using $m_{\mathrm{subjet}}^{\mathrm{max}}$ prevents arbitrarily large θ_{lab} from passing the x cut.

Tagging Efficiency (Jet p_T)

- All studies simulated at ATLAS at $\sqrt{s} = 13$ TeV.
- Boosted kinematics turn on at 300 GeV.
- light-heavy:
 light jet fragments
 to heavy quark
- light-light: light jet stays light
- Solid line: no pileup
- *Dotted* line: $\langle \mu \rangle = 40$

Tagging Efficiency (Jet η)

- Tag jets with $x \le 3$
 - $\bullet \sim 14\%$ of *b*-jets
 - $\bullet~\sim 6.5\%$ of *c*-jets
 - Mis-tag $\sim 0.65\%$ of light jets
- η dependence effectively flat for bottom and charm.
 - Slight dip in endcap $(\eta > 1)$.
 - Large dip at ATLAS detector services crack.
- Light jets lose extra forward efficiency.

Simulated Z' Bump Hunt

MADGRAPH $5 \rightarrow \text{PYTHIA } 8 \rightarrow \text{DELPHES } 3 \text{ (with FastJet 3)}$

- Plot $d\sigma/dM$ for dijet systems where both top jets are tagged.
 - ullet Proof of concept for μ_{x} tag; Delphes simulates a very simple detector.
 - Need member of ATLAS or CMS to implement in μ_x Geant4.

Simulated Z' Bump Hunt

MADGRAPH 5 o PYTHIA 8 o DELPHES 3 (with FastJet 3)

- Plot $d\sigma/dM$ for dijet systems where *both* top jets are tagged.
 - ullet Proof of concept for μ_{x} tag; Delphes simulates a very simple detector.
 - Need member of ATLAS or CMS to implement in μ_x Geant4.
- Plenty of muons in heavy jets, good statistics for double-tagging.
- The double-tag rate for **light** jets $\left(\left(\sim 6\times 10^{-3}\right)^2\approx 4\times 10^{-5}\right)$ is too small (he complained) need 10^9 events for good statistics
 - When one jet is tagged, scale event weight by one half times the probability to tag the recoil jet (from tagging efficiency survey)
 - Either jet could produce the real tag (probabilistic OR):

$$\left(1-(1-\epsilon_j)^2
ight) imes rac{1}{2}\epsilon_j = \left(2\epsilon_j-\epsilon_j^2
ight)rac{1}{2}\epsilon_jpprox \epsilon_j^2$$

• Reject events with two real tags, otherwise double counting.

$M_{Z'} = 2.5 \text{ TeV}$ $g_B = 1.3$

- Require both jets to be tagged.
- Mass window: $M_{Z'} \times [0.85, 1.25]$
- Narrow jets (R = 0.4)

•
$$\left|\eta_{jet}\right| \leq 2.7$$
, $\left|\Delta\eta_{jj}\right| \leq 1.5$

$M_{Z'} = 2 \text{ TeV}$ $g_B = 1$

- Require both jets to be tagged.
- Mass window: $M_{Z'} \times [0.85, 1.25]$
- Narrow jets (R = 0.4)
- $\left|\eta_{jet}\right| \leq 2.7$, $\left|\Delta\eta_{jj}\right| \leq 1.5$

Uncharted Waters

Dobrescu & Yu [arXiv:1306.2629, fig. 1]

Uncharted Waters

Dobrescu & Yu [arXiv:1306.2629, fig. 1]

Moving Forward

- Double-tagged exclusion is systematically limited must detect an integer number of signal events.
 - A *single-tag* could offer a competitive (possibly better) S/\sqrt{BG} , with 15 times more signal.
- New paper by Dobrescu and Liu (arXiv: 1506.06736) proposes a Z' in 3.4–4.5 TeV range.
 - \bullet Heavy partner of possible W $^{\prime}$ seen at 1.8–2 TeV in ATLAS WZ channel.
- Seeing/excluding a bump in all three classes (0-tag / 1-tag / 2-tag) makes the strongest statement.

Conclusion

• μ_x tags heavy flavor jets at the TeV scale.

• **b**-jet: 14%

• light-jet: < 0.7%

- Flat signal response in p_T and η .
- Minimal pileup sensitivity.
- Should offer significant improvements in detecting/excluding Z' and other high energy phenomenon.

$K(x,\kappa)$ and x_{\max}

$$\frac{dN}{dx} = 4\pi \frac{2x}{(x^2 + 1)^2} K(x, \kappa) \tag{8}$$

where $K(x, \kappa)$ corrects the shape

$$K(x,\kappa) = \frac{(1+\kappa^2) + x^2(1-\kappa^2)}{2\sqrt{1+x^2(1-\kappa^2)}} \Theta(x_{\text{max}} - x)$$
 (9)

We can calculate the maximum emission

$$x_{\text{max}} = 1/\sqrt{\kappa^2 - 1} \approx \sqrt{\gamma_{\mu,\text{cm}}^2 - 1}$$
 (10)

which, in our regime of interest $(\gamma_B \gg \gamma_{\mu,cm} \gg 1)$ is

$$x_{\rm max} \approx \sqrt{\gamma_{\mu,\rm cm}^2 - 1} \tag{11}$$