FELIX: the detector readout upgrade of the ATLAS experiment

Soo Ryu
Argonne National Laboratory, sryu@anl.gov
(on behalf of the FELIX group)
FELIX group

John Anderson, Soo Ryu, Jinlong Zhang

Hucheng Chen, Kai Chen, Francesco Lanni

Andrea Borgia, Henk Boterenbrood, Frans Schreuder, Jos Vermeulen

Lorne Levinson, Julia Narevicius, Alex Roich

Benedetto Gorini, Markus Joos, Giovanna Lehmann, Jorn Schumacher, Wainer Vandelli
Brief about FELIX

• What is FELIX?
 ▶ Front End Link Interface eXchange
 ▶ the new ATLAS Readout for Run4(2023)
 ▶ a heterogeneous switch

• Why we change?
 ▶ Upon the change of link protocol on FE side from S-Link to GBT-Link
 ▶ To introduce Commercial Off-The-Shelf (COTS) products → convenient to scale up the electronic components

GBT-link: radiation hard bi-directional optical link protocol developed by CERN
https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx
ATLAS TDAQ : Current (2015)

40.08 MHz

L1 trigger

trigger rate : 100 kHz

FE : Front-End
ROD : Read Out Driver
ROS : Read Out System (buffer)
HLTPU: High Level Trigger Processing Unit

Ethernet

Custom Link

S-Link

COTS network

Custom Components

PC

HLTPU

Aug 6, 2015
DPF meeting 2015, Ann Arbor
ROD-like features can be implemented in downstream of FELIX either in software or in hardware.
A new TDAQ architecture based on FELIX will become
1. Scalable
2. Heterogeneous

Routing of multiple traffic types:
(physics events, detector control, configuration, calibration, monitoring)
Reconfigurable data path
Multicasting, Cloning, QoS

Automatic failover and load balancing
Trigger data, LHC clock distribution

E-link: variable-width logical link on top
GBT. Can be used to logically separate different streams on a single link.

Feature and functionality

Aug 6, 2015
DPF meeting 2015, Ann Arbor
FELIX Architectural View

- **Front End Board**
 - GBTx

- **Optical Receiver**
 - Xilinx Virtex7

- **FPGA PCIe Card**
 - PCIe Gen. 3 x 8 Lane

- **Mezzanine card**

- **FELIX PC**
 - PCIe Gen3 Slot x6
 - Network Card

- **PC**
 - network Switch

Optical Link: 4.8 (9.6) Gbps / link

Trigger data / LHC clock 40.08 MHz

PCIe Gen. 3 x 8 Lane 64 Gbps

40 Gbps / port
Development Platform

High Tech Global 710
Xilinx Virtex 7
CXP module: 12ch

Mezzanine card

FELIX PC
PCIe Gen3 Slot x6
Network Card

Mellanox ConnectX-3 EN
40Gbps x 2port

SuperMicro X10DRG-Q
Haswell CPU 10 cores x2

KC705/GLIB

HTG-710
CXP1
CXP2
Xilinx Virtex7

PC
gbtX

12ch

PCle Gen. 3 x 8 Lane

Network Switch

2 port
FELIX Functional View

FELIX Firmware design

Time, Trigger & Control

Decode trigger data and recover LHC clock

FELIX PC

Buffer

Network Card

Software Pipeline

Data Storage

Data Storage

Network Switch

Send/Receive GBT data

Map GBT data to E-Link format

Push data to the memory

Repack E-link data to Industry standard network packet

Front End Board

Giga-Bit Transceiver

Central Router

PCle DMA Engine

GBTx

FELIX PC

Network Card

Software Pipeline

Repack E-link data to Industry standard network packet

Data Storage

Data Storage

Network Switch

Send/Receive GBT data

Map GBT data to E-Link format

Push data to the memory

Decide trigger data and recover LHC clock

FELIX Firmware design

Time, Trigger & Control

FELIX PC

Buffer

Network Card

Software Pipeline

Data Storage

Data Storage

Network Switch

Front End Board

Giga-Bit Transceiver

Central Router

PCle DMA Engine

GBTx

FGTb
• Split functional Test
 • Forwarding trigger signal and LHC clock (TTC – CR – GBT – FE)
 • PCI DMA performance
 • Network throughput

• Combined test : Full FPGA chain
Trigger/Clock Forwarding test

- Split functional Test
 - Forwarding trigger signal and LHC clock (TTC – CR – GBT – FE)
 - PCI DMA performance
 - Network throughput

- Combined test: Full FPGA chain
Trigger/Clock Forwarding test

- Constant latency: 247 ns (including cable delay: 5 ns)
- Jitter in LHC clock @ HTG710: 6.5 ps
 @ GBTx chip: 9 ps
PCIe DMA performance

- **Split functional Test**
 - Forwarding trigger signal and LHC clock
 - **PCI DMA performance**
 - a. PCIe – Memory : throughput test
 - b. Data Emulator – PCIe – Memory : stability test
 - Network throughput

- Combined test : Full FPGA chain
PCIe DMA performance

Throughput test

Working point
6.3 GB/s

Stability test

Stable readout from PCIe card possible over long timespan

(Throughput speed is only limited by Internal pseudo-data generator’s throughput)
Network throughput test

- Split functional Test
 - Forwarding trigger signal and LHC clock
 - PCI DMA performance
 - Network throughput (Memory – Pipeline – NIC – Switch – PC)

- Combined test: Full FPGA chain
Network throughput test

- Input from files
- Hardware limit: 40 Gbps
- Achieved maximum throughput for large data fragments: 36 Gbps
- Need more efforts for smaller fragments
Combined test : Full FPGA chain

- Data Emulator – GBT – FE – CR – PCIe – Memory
- pseudo data loop back through Front End forwarded to host memory
- FE and FELIX are synced in LHC clock
- Received data is matched to the generated data
Summary & Outlook

• Summary
 ● FELIX is a new readout system of ATLAS DAQ for the next LHC runs
 ● FELIX is a heterogeneous switch
 ● First integration test is done and achieved reasonable results

• Upcoming Tasks
 ● Establish multiple GBT link design and clocking scheme
 ● Implement all functionality (TTC Busy, HDLC encode/decode ...)
 ● Prove no data congestion between GBT and Central Router
 ● Optimize host software functionality and performance

• UC Irvine is going to join for software development

• Production and test plan
 A few FELIX prototypes will be produced and tested with several prototypes for new detector components foreseen for Run4
Evolution of Readout Architecture

ROD (readout driver): is an off-detector end point that processes incoming data to send via ethernet.

FELIX routes physics data to off-detector endpoint through industry standard network.

ROD-like functionality can be implemented either in software or in dedicated hardware.
FELIX Firmware Design

Legend:
- Main data path
- Slow control and monitor

Aug 6, 2015
DPF meeting 2015, Ann Arbor
Development team

FELIX FPGA
- GBT
- Central Router

Time, Trigger & Control
- PCIe DMA Engine

FELIX PC
- Software Pipeline

FPGA Firmware development
- Time, Trigger & Control
- Giga-bit Transceiver (GBT)
- PCIe DMA engine
- Central Router

Software development
- Independent implementation
- First integration efforts in May 2015

Aug 6, 2015
DPF meeting 2015, Ann Arbor