Recent electroweak measurements at ATLAS

Yusheng Wu

University of Michigan
Institute of Physics, Academia Sinica

Aug. 5th, DPF2015, Ann Arbor

Introduction

- Electroweak studies
 - Precision measurements
 - Single boson, diboson productions
 - Tight constrain on SM parameters, QCD and EWK corrections
 - **Exploration** of less constrained or new production channels
 - Higgs, vector boson fusion/scattering, three boson productions
 - Understanding of EWSB and production of rare processes
 - Search for discrepancies that are sensitive to new physics
 - Anomalous boson self couplings

Standard Model Production Cross Section Measurements

Status: March 2015

Cross Section Measurement

$$\sigma_{PS} = \frac{N_{data} - N_{bkg}}{lumi \times A \times C}$$
 $\sigma_{FV} = \frac{N_{data} - N_{bkg}}{lumi \times C}$

- ☐ Often measured in both fiducial volume and total phase space
 - ❖ A signal acceptance in fiducial volume
 - ❖ C efficiency correction due to reconstruction
 - $\diamond \sigma_{FV}$ less affected by theoretical uncertainty
- ☐ Differential measurements
 - "Unfolded" to FV by removing the detector effects
 - ❖ Properly binned according to statistics and migration effects
- ☐ Comparison with theory
 - Overall good agreement
 - **Some discrepancies** (e.g. in WW, W γ , Z γ) were reduced by inclusion of high order corrections in the predictions

Y. Wu

Anomalous Gauge Boson Couplings (aGCs)

- ☐ Trilinear and Quartic boson couplings (TGC, QGC)
 - ❖ Precisely determined by SU(2) x U(1) gauge symmetry
 - Only charged couplings allowed
 - o TGCs in VBF, VV; QGCs in VBS, VVV
 - Can be used to constrain new physics that modify bosonic self couplings
 - \circ Anomaly can result in large derivation in production σ or in differential distributions
 - o aGCs Sensitive to \sqrt{s}

TGC

MOGC N

No deviation from SM prediction is observed with Run I data

- → Stringent limits are set
 - o aGCs parameters based on effective Lagrangian or EFT
 - Tighter or comparable to Tevatron/LEP results

Recorded data with ATLAS

High data-taking efficiency and detector operation rate, thanks to the teams that operate LHC and ATLAS

Recent electroweak measurements

☐ Measurements covered in this talk

- Based on 13 TeV data
 - Public plots for W, Z and ZZ productions, ATL-PHYS-PUB-2015-021
- Based on 8 TeV data
 - Four lepton differential measurement, ATLAS-CONF-2015-031
 - Evidence of Wγγ production, Phys. Rev. Lett. 115, 031802 (2015)
 - WW cross section measurement, ATLAS-CONF-2014-033
- ❖ Based on 7 TeV data
 - \circ Z Forward-backward asymmetry and extraction of θ_W , arXiv:1503.03709
 - Combined WW+WZ measurement in lvjj final state, JHEP01(2015)049

13 TeV W plots

ATL-PHYS-PUB-2015-021

Very early Run II data, reasonable agreement with MC

W candidates: lepton pt > 25 GeV, Etmiss > 20 GeV, M_T > 50 GeV $|\eta_{\mu}|$ < 2.4, $|\eta_{e}|$ < 2.47 excluding [1.37, 1.52]

13 TeV Z plots

ATL-PHYS-PUB-2015-021

Very early Run II data, reasonable agreement with MC

Z candidates: two leptons with pt > 25 GeV, 66<M(II)<116 GeV $|\eta_{\mu}|$ <2.4, $|\eta_{e}|$ <2.47 excluding [1.37, 1.52]

13 TeV ZZ candidate

Inv. Masses of two Z candidates: 94 GeV, 86 GeV

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Collisions

\diamond Measure differential σ in M(4I) and Pt(4I) for inclusive 4I production

- Explore multiple production modes at once, constrain higher order effects in a wide range (80<M(4I)<1000 GeV)
- First try to constrain gg->4l contribution from data: gg induced production is only predicted at LO so far in on-shell ZZ region

About 500 candidates, expect ~5% from backgrounds

Unfolded to fiducial region:

Four selected leptons 80<M(4I)<1000 GeV

SM prediction:

- qq->4l at NLO QCD, non resonant gg->4l at LO
- H->4l and on-shell qq->4l corrected to NNLO QCD + NLO EWK

Comparison:

- Consistent with Higgs signal strength in dedicated paper: arXiv:1408.5191
- Possibly missing k-factor for off-shell ZZ* production
- Slight tension in on-shell ZZ region relates to missing k-factor in gg->4l

Unfolded to fiducial region:

Four selected leptons 80<M(4l)<1000 GeV

SM prediction:

- qq->4l at NLO QCD, no resonant gg->4l at LO
- H->4l corrected to NNLO QCD + NLO EWK

Comparison:

- Missing higher order corrections in Pt spectrum
- Modelling issue in low Pt due to gluon resummation

ATLAS-CONF-2015-031

Inclusive gg component is extracted from data in m(4l)>180GeV region, where qq contribution is precisely predicted at NNLO QCD + NLO EWK

At on-shell ZZ region, inclusive gg->4l contribution includes: Off-shell Higgs, Non-resonant gg, and the interference

The derived signal strength w.r.t. current LO prediction

$$\mu_{gg} = 2.4 \pm 1.0(stat.) \pm 0.5(syst.) \pm 0.8(theory)$$

Consistent with the predicted k-factor for of-shell Higgs and interference, yet to be calculated for the full process

8 TeV: Evidence of Wyy production

- Tri-boson production with relative large cross section
 - Final state: lepton + Etmiss + two photons
 - \circ Significant fake backgrounds : jet-> γ , jet->lepton, estimated from data
 - Sensitive to the WWγγ aQGC

8 TeV: Evidence of Wγγ production

, 5c v. Ectt. 115, 051002 (2015)	Phys	. Rev.	Lett.	115,	031802	(2015))
----------------------------------	------	--------	-------	------	--------	--------	---

	$\sigma^{ m fid}$ [fb]	σ^{MCFM} [fb]
Inclusive $(N_{\text{jet}} \ge 0)$		
μνγγ evγγ	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.) 4.3 $^{+1.8}_{-1.6}$ (stat.) $^{+1.9}_{-1.8}$ (syst.) ± 0.2 (lumi.) 6.1 $^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
$\ell \nu \gamma \gamma$	$6.1 _{-1.0}^{+1.1} \text{(stat.)} \pm 1.2 \text{(syst.)} \pm 0.2 \text{(lumi.)}$	
Exclusive $(N_{\text{jet}} = 0)$		
μνγγ evγγ	$3.5 \pm 0.9 \text{ (stat.)} ^{+1.1}_{-1.0} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$ $1.9 ^{+1.4}_{-1.1} \text{ (stat.)} ^{+1.1}_{-1.2} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$ $2.9 ^{+0.8}_{-0.7} \text{ (stat.)} ^{+1.0}_{-0.9} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$	1.88 ± 0.20
$\ell \nu \gamma \gamma$	$2.9^{+0.8}_{-0.7}$ (stat.) $^{+1.0}_{-0.9}$ (syst.) ± 0.1 (lumi.)	

First time have 3σ evidence of W $\gamma\gamma$ production

- Measured inclusive cross section about 20 higher than NLO prediction
- Better agreement in zero jet case
- → Likely due to missing higher order correction

8 TeV: Evidence of Wγγ production

***** WW $\gamma\gamma$ aQGCs are explored in high m($\gamma\gamma$)>300 GeV and exclusive region

- No data events observed
- Limits are set on dimension eight operators

https://atlas.web.cern.ch/Atlas/GROU PS/PHYSICS/PAPERS/STDM-2013-05/

Comparable limits to CMS More sensitive to f_{T0}

8 TeV: WW Cross Section

- Large WW cross section and Search for aTGCs with WWV vertices
- Previous LHC measurements indicated higher cross section than NLO prediction
 - \circ at 1.5 σ level from both ATLAS and CMS

Inclusive WW cross section prediction at 8TeV:

NLO qq + LO gg + NNLO ggH \sim 58.7 \pm 3.0 pb NNLO qq + LO gg + NNLO ggH \sim 63.2 \pm 2.0 pb Phys. Rev. Lett. 113, 212001 (2014)

Sizable NNLO correction ~ 8%

Important to test the consistency with NNLO predictions using full Run I data

8 TeV: WW Cross Section

❖ Signature: two high-pt leptons and large MET (ee, μμ, eμ)

Selection

- Two leptons: Pt>25, 20 GeV
- Remove Z peak in same flavor channel
- Cut on relative E_T^{miss} , track-based p_T^{miss} , $\Delta\phi(E_T^{miss},p_T^{miss})$ to reduce Z+jets
- Require zero jets (25GeV) to reduce Top

19

8 TeV: WW Cross Section

Cross Section at total phase space

Fiducial cross sections:

$$\sigma_{e\mu}^{fid}$$
 377.8 $^{+6.9}_{-6.8}$ (stat) $^{+25.1}_{-22.2}$ (syst) $^{+11.4}_{-10.7}$ (lumi) fb

Compatible with approximate NNLO+NNLL calculation

$$357.9 \pm 14.4$$
 fb

arXiv:1410.4745

Measured total cross section

- 10% precision, mainly systematic unc.
- Compatible with full NNLO prediction at about 1 σ

Remaining difference may due to

- Missing k-factor for gg->WW
- Modelling on gluon resummation (effect on Jet-Veto)

New result from CMS

- arXiv:1507.03268
- Measured total σ agree well with NNLO prediction
- Applied resummation correction to the acceptance

7 TeV: Z Forward-Backward Asymmetry

- ☐ Forward-Backward Asymmetry (A_{FB}) in Z decays
 - ❖ Predicted by V-A structure of weak interaction
 - Can be used to determine weak mixing angleBoth relates to the coupling ratio of vector and axial vector parts
 - \clubsuit Related to $\cos \theta$, where θ is angle between lepton and quark in dilepton rest frame

$$A_{\rm FB} = \frac{N_{\cos \theta_{\rm CS}^* \ge 0} - N_{\cos \theta_{\rm CS}^* < 0}}{N_{\cos \theta_{\rm CS}^* \ge 0} + N_{\cos \theta_{\rm CS}^* < 0}}$$

Collin-Soper Frame is used to minimize the ambiguity due to transverse momentum of incoming quark: θ_{CS}^*

7 TeV: Z Forward-Backward Asymmetry

 A_{FB} only occur in the Z production, expect different A_{FB} in different mass range due to mixing of γ^* and Z production modes.

In general, nice agreement between data and prediction

7 TeV: Z Forward-Backward Asymmetry

Template fit used to extract the most probable mixing angle w.r.t. measured A_{FB}

Combined $0.2308 \pm 0.0005(\text{stat.}) \pm 0.0006(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2308 \pm 0.0012$

- Large PDF uncertainty. Consistent with previous results
- Most precise record from LEP and SLC, Complementary test from ATLAS and CMS

7 TeV: WW+WZ measured in lvjj final state

- ❖ WW/WZ Semi-leptonic decay final state
 - lepton + Etmiss + two jets with inv. mass consistent with W/Z
 - Large irreducible background from W/Z+jets
 - Complementary sensitivity to aTGCs

7 TeV: WW+WZ measured in lvjj final state

JHEP01(2015)049

❖ W/Z+jets background estimation

- MC shape
- Relax Etmiss requirement and fit MC to data to derive scale factor, close to one
- **\cdot\ Cross Section Extraction** $\sigma_{\rm tot} = 68 \pm 7 \; ({\rm stat.}) \pm 19 \; ({\rm syst.}) \; {\rm pb}$

Total data: 2.62×10^5

Compatible with NLO prediction of 61.1±2.2 pb

7 TeV: WW+WZ measured in lvjj final state

- aTGCs explored by fitting Pt(jj) with 75<m(jj)<95 GeV</p>
 - Stringent limits set on aTGCs parameters or EFT dimension six parameters

Y. Wu

Summary

- ☐ Recent electroweak measurements been summarized
 - Overall consistency with SM prediction
 - Several discrepancies can be reduced by adding higher order corrections
 - Start to be sensitive to NNLO corrections
 - Stringent limits placed on anomalous boson couplings
 - Open channels inaccessible in the past, e.g. Tri-boson
- ☐ Prospects
 - A few final Run I papers are coming
 - O Stay tuned for more 13 TeV results!

Backup

ATLAS Detector

ATLAS (A Toroidal LHC ApparatuS): 44×25m, 7000t Inner tracking $|\eta| < 2.5$, EM calo $|\eta| < 3.2$, Hadronic calo $|\eta| < 4.9$, Muon system $|\eta| < 2.7$ ATLAS collaboration 3k physicists from 38 countries

