Open Heavy Flavor Measurements in Heavy Ion Collisions with CMS Jian Sun Purdue University for the CMS Collaboration DPF 2015, Ann Arbor August 6th, 2015 #### **Outline** Physics Motivation Open Heavy Flavor Measurements in PbPb and pPb #### **Physics Motivation** - Heavy quarks are primarily produced at the early stages of the collisions - →Experience the full evolution of the medium - Flavor dependence energy loss - Heavy quarks are expected to lose less energy than light quarks and gluons in medium due to color charge and dead cone effect [1] $$\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \xrightarrow{?} R_{AA}^B > R_{AA}^D > R_{AA}^{light}$$ From light to heavy quark: ratio between radiative and collisional energy loss changes [1] Y.L. Dokshitzer, D. E. Kharzeev, Phys. Lett. B 519 (2001) 199 Cold nuclear matter effect: Gluon shadowing, Initial state Energy loss, etc #### Open beauty measurements in CMS * b-jet, B meson and non-prompt J/ψ Non-prompt J/ψ O(0.1%) of b cross section Proper decay length ~ 500 μm Secondary vert Primary vertex B meson O(0.01%) of b cross section b-jet O(100%) of total b cross section #### Centrality and Nuclear modification factor Centrality: describes degree of overlap of AA collisions - Centrality 0 to 100%, central collision to peripheral collision - **●Normally represented by N**_{part} - N_{part}: number of participating nucleons - N_{coll}: number of the binary nucleon-nucleon collisions $$R_{AB} = \frac{1}{\langle N_{coll} \rangle} \frac{d^{2}N_{AB} / dp_{T} d\eta}{d^{2}N_{pp} / dp_{T} d\eta}$$ - $R_{AB} > 1$: enhancement - $R_{AB} = 1$: no medium effect - $R_{AB} < 1$: suppression #### b-jet Measurements in PbPb and pPb #### **Identifying b-jet** B-quark decays are heavily CKM-suppressed **Primary** Vertex Secondary **Vertex** d_0 **Jet** \rightarrow Long lifetimes Jet Primary identification method is using a Secondary Vertex > Long lifetime of b = mm or cm vertex displacement ❖ Flight distance (L_{xyz}) of the secondary vertex used as a discriminating variable Tagging methods independent of secondary vertex reconstruction used as cross-check Algorithms described in: JINST 8 (2013) P04013 **Displaced** **Tracks** #### b-jet in PbPb: R_{AA} - First measurement of heavy flavor jet R_{AA} - Clear suppression of b-jet: R_{AA} shows clear trend as a function of centrality - R_{AA} (b-jet) \approx R_{AA} (inclusive jet): at high pt, no strong indication of flavor dependence within the uncertainties - Contributions from gluon splitting? Negligible quark mass at these energies? #### **b-jet in pPb:** R_{pA}^{PYTHIA} - pp reference from PYTHIA simulation (no data reference available) - * R_{pA} is consistent with unity within uncertainties - No suppression observed in pPb collisions at 5.02 TeV - No significant cold nuclear matter effects are observed within uncertainties. Suppression in PbPb is from medium effect. b-jet R_{PYTHIA} η_{CM} ### Non-prompt J/ψ Measurements in PbPb and pPb 10 # **CMS PAS HIN-12-014** #### Non-prompt J/ψ reconstruction - Fit muon pairs to a common vertex - Simultaneous fit on invariant mass and pseudo-proper decay length for yield extraction $\ell_{\text{J/}\psi} = L_{xy} m_{\text{J/}\psi} / p_{\text{T}}$ - Yields of non-prompt and prompt J/ψ #### Non-prompt J/ ψ in PbPb: R_{AA} - A slow increase of the suppression is observed with increasing centrality of the collision. CMS PAS HIN-12-014 - A hint of less suppression at low p_T #### Non-prompt J/ ψ in pPb: R_{FB} $$R_{FB}(p_{T}, y) = \frac{d^{2}\sigma(p_{T}, y > 0)/dp_{T}dy}{d^{2}\sigma(p_{T}, y < 0)/dp_{T}dy}$$ Large x_{Pb} $x_{1,2} = \frac{\sqrt{m_{J/\psi}^2 + p_{TJ/\psi}^2}}{\sqrt{s}} \bullet e^{\pm y}$ - * At small x, partons in nucleus depleted compared to proton - Characterized by forward/backward asymmetry - Non-prompt J/ψ studied in shadowing range: 10⁻⁴<x<10⁻² - R_{FB} is expected to be smaller than 1.0 in some range Small Xph #### Non-prompt J/ ψ in pPb: R_{FB} $$R_{FB}(p_{\rm T},y) = \frac{d^2\sigma(p_{\rm T},y>0)/dp_{\rm T}dy}{d^2\sigma(p_{\rm T},y<0)/dp_{\rm T}dy}$$ #### Decreased yields at forward rapidity: consistent with presence CNM effects ## B Mesons Measurements in PbPb and pPb #### B mesons in pPb - Fully reconstructed hadronic decays: - $\bullet \quad B^+ {\longrightarrow} \, J/\psi \,\, K^+ {\longrightarrow} \mu^+ \mu^- \, K^+$ - $B^0 \rightarrow J/\psi K^{0*} \rightarrow \mu^+\mu^- K^+\pi^-$ - $B_s^0 \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$ - B candidate reconstruction - $J/\psi \rightarrow \mu^+\mu^-$ reconstruction - Tracks are associated to J/ψ candidate to build B-meson candidates - Candidate selection based on B kinematics - Mass spectrum fit to get yields of B mesons CMS PAS HIN-14-004 #### **B** mesons in pPb: R_{pA}^{FONLL} - * FONLL prediction as pp reference (no data reference available) - R_{pA} is consistent with unity within uncertainty - No significant cold nuclear matter effects are observed within uncertainties #### B mesons in PbPb - Able to reconstruct B meson in PbPb with CMS - First fully reconstructed B meson signal in PbPb! - 2015 Run-2: 20x more statistics (Increased luminosity and higher collision energy) - ❖ Potential measurements of B⁺, B⁰ and B_s⁰ in PbPb #### CMS detector performance plot B⁺ invariant mass spectrum in 2011 PbPb data #### **Summary** - Open beauty measurements with CMS - Suppression of b-jet and non-prompt J/ψ in PbPb - Cold nuclear matter effects are studied - Perspective analysis - D and B meson measurements in PbPb - More differential heavy flavor jets measurements #### Backup #### HF production in pp #### LO process: Flavour Creation (FCR) - → gluon fusion or light qq annihilation - → bb produced back-to-back in azimuthal plane and symmetric in p_T #### NLO process: Flavour Excitation (FEX) - → excitation of b/b sea quark by gluon or light quark/anti-quark - → bb pairs produced asymmetric in p_T and with a broad opening angle #### NLO process: Gluon splitting (GSP) - gluon splits in a bb pair - → produced with small opening angles and asymmetric in p_T #### HF production in pp LO b-b production (FCR) sub-dominant at the LHC #### **B-Jet reconstruction** jet reconstruction/b-jet identification SV tagger b jet purity determination template (from simulation) fit on SV mass spectrum Efficiency correction+resolution unfolding from simulation, cross checked by data-driven method #### B meson in pPb - Three component fit for signal extraction(Fully reconstructed B meson signal in heavy ion collisions): - Signal - Combinatorial background from J/ψ +track(s) - Non-prompt component from other B-meson decays that form peaking structures (e.g. in B⁺ analysis, bkg from $B^0 \rightarrow J/\psi \ K^{0^*}$) #### B meson non-prompt Bkg - **♣** B+: - B⁺ \rightarrow J/ ψ π decays in which π misidentified as K - B+ decays via resonant channels e.g., B+ \rightarrow J/ ψ K*(892)+. Kaons from K*(892)+ are then identified as genuine B+ \rightarrow J/ ψ K - Similar from $B^0 \rightarrow J/\psi K^*(892)^0$ - **♣** B⁰: - Peaking BG at high mass from $B^+ \rightarrow J/\psi$ decays - Peaking BG at intermediate mass from $B_s \rightarrow J/\psi \phi$ where a kaon is misidentified as π - Peaking BG at low mass is the sum of other contributions such as $B^0 \rightarrow J/\psi \ K(1270)^0$, $B^+ \rightarrow J/\psi \ K(1270)^+$ and other $B^0 \rightarrow J/\psi$ tracks decays - **♣** B_s: - Potential contribution from $B^0 \rightarrow J/\psi + K^*$, but not observed in the final spectrum