

Open Heavy Flavor Measurements in Heavy Ion Collisions with CMS

Jian Sun
Purdue University
for the CMS Collaboration

DPF 2015, Ann Arbor August 6th, 2015

Outline

Physics Motivation

Open Heavy Flavor Measurements in PbPb and pPb

Physics Motivation

- Heavy quarks are primarily produced at the early stages of the collisions
- →Experience the full evolution of the medium

- Flavor dependence energy loss
 - Heavy quarks are expected to lose less energy than light quarks and gluons in medium due to color charge and dead cone effect [1]

$$\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \xrightarrow{?} R_{AA}^B > R_{AA}^D > R_{AA}^{light}$$

 From light to heavy quark: ratio between radiative and collisional energy loss changes

[1] Y.L. Dokshitzer, D. E. Kharzeev, Phys. Lett. B 519 (2001) 199

Cold nuclear matter effect: Gluon shadowing, Initial state Energy loss, etc

Open beauty measurements in CMS

* b-jet, B meson and non-prompt J/ψ Non-prompt J/ψ O(0.1%) of b cross section Proper decay length ~ 500 μm Secondary vert Primary vertex B meson O(0.01%) of b cross section b-jet O(100%) of total b cross section

Centrality and Nuclear modification factor

Centrality: describes degree of overlap of AA collisions

- Centrality 0 to 100%, central collision to peripheral collision
- **●Normally represented by N**_{part}
- N_{part}: number of participating nucleons
- N_{coll}: number of the binary nucleon-nucleon collisions

$$R_{AB} = \frac{1}{\langle N_{coll} \rangle} \frac{d^{2}N_{AB} / dp_{T} d\eta}{d^{2}N_{pp} / dp_{T} d\eta}$$

- $R_{AB} > 1$: enhancement
- $R_{AB} = 1$: no medium effect
- $R_{AB} < 1$: suppression

b-jet Measurements in PbPb and pPb

Identifying b-jet

B-quark decays are heavily CKM-suppressed

Primary

Vertex

Secondary

Vertex

 d_0

Jet

 \rightarrow Long lifetimes

Jet

Primary identification method is using a Secondary Vertex

> Long lifetime of b = mm or cm vertex displacement

❖ Flight distance (L_{xyz}) of the secondary vertex used as a discriminating variable

Tagging methods independent of secondary vertex reconstruction used as cross-check

Algorithms described in: JINST 8 (2013) P04013

Displaced

Tracks

b-jet in PbPb: R_{AA}

- First measurement of heavy flavor jet R_{AA}
- Clear suppression of b-jet: R_{AA} shows clear trend as a function of centrality
- R_{AA} (b-jet) \approx R_{AA} (inclusive jet): at high pt, no strong indication of flavor dependence within the uncertainties
 - Contributions from gluon splitting? Negligible quark mass at these energies?

b-jet in pPb: R_{pA}^{PYTHIA}

- pp reference from PYTHIA simulation (no data reference available)
- * R_{pA} is consistent with unity within uncertainties
- No suppression observed in pPb collisions at 5.02 TeV
- No significant cold nuclear matter effects are observed within uncertainties. Suppression in PbPb is from medium effect.

b-jet R_{PYTHIA}

 η_{CM}

Non-prompt J/ψ Measurements in PbPb and pPb

10

CMS PAS HIN-12-014

Non-prompt J/ψ reconstruction

- Fit muon pairs to a common vertex
- Simultaneous fit on invariant mass and pseudo-proper decay length for yield extraction $\ell_{\text{J/}\psi} = L_{xy} m_{\text{J/}\psi} / p_{\text{T}}$
 - Yields of non-prompt and prompt J/ψ

Non-prompt J/ ψ in PbPb: R_{AA}

- A slow increase of the suppression is observed with increasing centrality of the collision.

 CMS PAS HIN-12-014
- A hint of less suppression at low p_T

Non-prompt J/ ψ in pPb: R_{FB}

$$R_{FB}(p_{T}, y) = \frac{d^{2}\sigma(p_{T}, y > 0)/dp_{T}dy}{d^{2}\sigma(p_{T}, y < 0)/dp_{T}dy}$$

Large x_{Pb}

 $x_{1,2} = \frac{\sqrt{m_{J/\psi}^2 + p_{TJ/\psi}^2}}{\sqrt{s}} \bullet e^{\pm y}$

- * At small x, partons in nucleus depleted compared to proton
 - Characterized by forward/backward asymmetry
- Non-prompt J/ψ studied in shadowing range: 10⁻⁴<x<10⁻²
 - R_{FB} is expected to be smaller than 1.0 in some range

Small Xph

Non-prompt J/ ψ in pPb: R_{FB}

$$R_{FB}(p_{\rm T},y) = \frac{d^2\sigma(p_{\rm T},y>0)/dp_{\rm T}dy}{d^2\sigma(p_{\rm T},y<0)/dp_{\rm T}dy}$$

Decreased yields at forward rapidity: consistent with presence CNM effects

B Mesons Measurements in PbPb and pPb

B mesons in pPb

- Fully reconstructed hadronic decays:
 - $\bullet \quad B^+ {\longrightarrow} \, J/\psi \,\, K^+ {\longrightarrow} \mu^+ \mu^- \, K^+$
 - $B^0 \rightarrow J/\psi K^{0*} \rightarrow \mu^+\mu^- K^+\pi^-$
 - $B_s^0 \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$

- B candidate reconstruction
 - $J/\psi \rightarrow \mu^+\mu^-$ reconstruction
 - Tracks are associated to J/ψ candidate to build B-meson candidates
- Candidate selection based on B kinematics
- Mass spectrum fit to get yields of B mesons

CMS PAS HIN-14-004

B mesons in pPb: R_{pA}^{FONLL}

- * FONLL prediction as pp reference (no data reference available)
- R_{pA} is consistent with unity within uncertainty
- No significant cold nuclear matter effects are observed within uncertainties

B mesons in PbPb

- Able to reconstruct B meson in PbPb with CMS
- First fully reconstructed B meson signal in PbPb!
- 2015 Run-2: 20x more statistics (Increased luminosity and higher collision energy)
- ❖ Potential measurements of B⁺, B⁰ and B_s⁰ in PbPb

CMS detector performance plot

B⁺ invariant mass spectrum in 2011 PbPb data

Summary

- Open beauty measurements with CMS
 - Suppression of b-jet and non-prompt J/ψ in PbPb
 - Cold nuclear matter effects are studied

- Perspective analysis
 - D and B meson measurements in PbPb
 - More differential heavy flavor jets measurements

Backup

HF production in pp

LO process: Flavour Creation (FCR)

- → gluon fusion or light qq annihilation
- → bb produced back-to-back in azimuthal plane and symmetric in p_T

NLO process: Flavour Excitation (FEX)

- → excitation of b/b sea quark by gluon or light quark/anti-quark
- → bb pairs produced asymmetric in p_T and with a broad opening angle

NLO process: Gluon splitting (GSP)

- gluon splits in a bb pair
- → produced with small opening angles and asymmetric in p_T

HF production in pp

LO b-b production (FCR) sub-dominant at the LHC

B-Jet reconstruction

jet reconstruction/b-jet identification

SV tagger

b jet purity determination

template (from simulation) fit on SV mass spectrum

Efficiency correction+resolution unfolding

from simulation, cross checked by data-driven method

B meson in pPb

- Three component fit for signal extraction(Fully reconstructed B meson signal in heavy ion collisions):
 - Signal
 - Combinatorial background from J/ψ +track(s)
 - Non-prompt component from other B-meson decays that form peaking structures (e.g. in B⁺ analysis, bkg from $B^0 \rightarrow J/\psi \ K^{0^*}$)

B meson non-prompt Bkg

- **♣** B+:
 - B⁺ \rightarrow J/ ψ π decays in which π misidentified as K
 - B+ decays via resonant channels e.g., B+ \rightarrow J/ ψ K*(892)+. Kaons from K*(892)+ are then identified as genuine B+ \rightarrow J/ ψ K
 - Similar from $B^0 \rightarrow J/\psi K^*(892)^0$
- **♣** B⁰:
 - Peaking BG at high mass from $B^+ \rightarrow J/\psi$ decays
 - Peaking BG at intermediate mass from $B_s \rightarrow J/\psi \phi$ where a kaon is misidentified as π
 - Peaking BG at low mass is the sum of other contributions such as $B^0 \rightarrow J/\psi \ K(1270)^0$, $B^+ \rightarrow J/\psi \ K(1270)^+$ and other $B^0 \rightarrow J/\psi$ tracks decays
- **♣** B_s:
 - Potential contribution from $B^0 \rightarrow J/\psi + K^*$, but not observed in the final spectrum

