

Search for long-lived particles at BABAR

Richard Kass Ohio State University On behalf of the BABAR Collaboration

PRL 114, 171801 (2015)

Search History

There have been many searches for long lived particles (LLPs) **Electron Beam Dumps** Andreas, Niebuhr, Ringwald, PRD86, 095019 (2012) Neutrino Experiments π^{0} -> γ X: Gninenko, PRD **85** 055027 (2012) NuTeV: PRL 83, 4943 (1999), 84, 4043 (2000), 87, 041801 (2001) Hadron Colliders DO: PRL 97, 161802 (2006), 103 071801 (2009) CDF: PRD 58, 051102(R) (1998) ATLAS: PL B 719 280 (2013), PRL 108, 251801 (2012) CMS: PRL 114, 061801 (2015), PRD 91 052012 (2015) LHCb: Eur. Phys. J. C 75 152 (2015) Most of these searches were optimized for m< GeV or m>> GeV Experiments at B-factories well suited for particles with mass ~ few GeV Very large data sets, open triggers, "simple" event topologies. "Search for heavy neutrinos at Belle," PRD 87, 071102 (2013) (m_K<m_v<m_B, model dependent)

This analysis is generic, uses long lifetime as signature

BaBar Data Set

Took data 1999-2008 at PEP-II asymmetric e^+e^- collider: ~1.3x10⁹ $e^+e^- \rightarrow c\bar{c}$, ~0.9x10⁹ $e^+e^- \rightarrow \tau^+\tau^-$, ~0.5x10⁹ $e^+e^- \rightarrow B\bar{B}$, ~0.2x10⁹ $e^+e^- \rightarrow b\bar{b}$

Richard Kass

LLP production at B factories-I

Via dark vector portal Produce a dark-sector photon A' via kinetic mixing with the SM photon: $\epsilon F^{uv}F'_{uv}$

A' decays into dark (pseudo)scalar or vectors Some of these dark particles can be long lived & decay into SM particles

LLP production at B factories-II

Via Higgs portal A light scalar h/X mixes with SM Higgs Production rate $\propto m_b^2$ or m_t^2 , decay rate $\propto m_f^2$

Clarke, Foot, Volkas , JHEP 1402 (2014) 123

Bezrukov, Gorbunov, JHEP 1307 (2013) 140

Analysis: Event Selection

Form vertex out of track pairs. Use PID to loosely select e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\mp$, $\pi^+\pi^-$, K^+K^- , $\pi^\pm K^\mp$

Allow overlaps, i.e. more than one combo.

Require:

Track $d_0 > 3\sigma$ Vertex $\chi^2 < 10$ (1 DOF) 1 < r < 50 cm, $\sigma_r < 0.2$ cm No hits before the vertex $\alpha < 0.01$ rad $\sigma_m < 0.2$ GeV/c²

Eliminate:

 $K_{\rm s}$ and Λ with mass cuts $e^+e^- \earrow e^+e^-$ & cosmics with angle cuts Beampipe, support tube, drift chamber wall

LLP fully reconstructed: A signal would appear as a mass peak Fit the *m* distribution assuming background only to obtain the background shape Perform unbinned extended maximum likelihood fit Scan for a signal on top of background in 2 MeV steps For each scan point (m_o) determine signal significance (S)

Richard Kass

Data Mass Distributions

Highest-significance mass points


```
p-value=8x10<sup>-3</sup> with look-elsewhere effect
in m<sub>µµ</sub> < 0.5 GeV
```

ee

Model independent Upper Limits Calculate 90% CL upper limits on $\sigma(e^+e^-\rightarrow LX)BF(L\rightarrow f)\varepsilon(f)$

Higgs portal ULs for B->X_sL for different L lifetimes

Calculate 90% CL upper limits on BF($B \rightarrow X_s L$)BF($L \rightarrow f$)

- L= spin 0
- X_s hadronic system with strangness =-1
- Include systematic errors: Luminosity Reconstruction efficiency Monte Carlo statistics

Summary

First O(GeV) mass-range search to use the long lifetime as the main signature
Model-independent limits
efficiency tables for application to any model available at: http://link.aps.org/supplemental/10.1103/PhysRevLett.114.171801
Model-dependent limits for Higgs-portal scenario
Published: PRL 114, 171801 (2015)

Future outlook:

Similar measurements can be done at Belle now with

~2X BaBar's data sample

Eventually Belle-II will have ~30X the BaBar+Belle data sample

Extra Slides

BaBar Detector

BABAR DETECTOR FOR THE PEP-II B FACTORY

SVT, DCH: charged particle tracking: vertex & mom. resolution, K_s^0/Λ EMC: electromagnetic calorimeter: $\gamma/e/\pi^0/\eta$ DIRC, IFR, DCH: charged particle ID: $\pi/\mu/K/p$ NIM A479, 1 (2002) Highly efficient trigger for B mesons NIM A729, 615 (2013) Richard Kass