Lifetime and quantum numbers of the Higgs boson using the decay $H \rightarrow 4\ell$

Christopher B. Martin

Johns Hopkins University For the CMS Collaboration

APS DPF Meeting Aug 8, 2015

Observables in $H \rightarrow 4\ell$ On-Peak Spin-Parity & Tensor Structure On-Peak Lifetime NEW! Off-Peak Width Off-Peak Spin-Parity NEW! Conclusions

Christopher B. Martin (JHU)

- Eight independent d.o.f. describe the kinematics in center of mass frame
 - $m_{4\ell}, m_{Z1}, m_{Z2}, \theta^*, \Phi_1, \theta_1, \theta_2, \Phi$
 - Difficult to use all simultaneously

 Transform into Discriminants sensitive to specific pieces of amplitude using MELA method

Spin-1

- Excluded from Landau-Yang ($H \rightarrow \gamma \gamma$)
- $H \rightarrow ZZ$ kinematics exclude any mixture of 1^+ and 1^- , any production

arXiv:1411.3441

- Spin-0 Amplitude
 - Expression to the order of q^2
 - Interpretation only clear for small BSM contributions

$$\begin{split} \mathcal{A}(HVV) \sim & \frac{1}{v} \quad \left(\left[\mathcal{A}_{1} - e^{i\phi_{\Lambda_{Q}}} \frac{\left(q_{V_{1}} + q_{V_{2}}\right)^{2}}{\left(\Lambda_{Q}\right)^{2}} - e^{i\phi_{\Lambda_{1}}} \frac{q_{V_{1}}^{2} + q_{V_{2}}^{2}}{\left(\Lambda_{1}\right)^{2}} \right] m_{V}^{2} \epsilon_{V_{1}}^{*} \epsilon_{V_{2}}^{*} \\ & + \quad q_{2} f_{\mu\nu}^{*(V_{1})} f^{*(V_{2}),\mu\nu} + a_{3} f_{\mu\nu}^{*(V_{1})} \tilde{f}^{*(V_{2}),\mu\nu} \right) \end{split}$$

- In the SM only the a_1 term is sizable for ZZ and WW ($a_1 = 2$)
- Λ₁ is scale of new physics on-peak
- Λ_Q is scale of new physics off-peak
- a_2 is a CP-even scalar ($10^{-2} 10^{-3}$ in SM)
- ► *a*₃ is a CP-odd pseudo-scalar (three-loop level in SM)
- a_2 , a_3 , Λ_1 , Λ_Q (ZZ terms) are tested in $H \rightarrow 4\ell$
- $a_2^{Z\gamma}$, $a_3^{Z\gamma}$, $\Lambda_1^{Z\gamma}$, $a_2^{\gamma\gamma}$, $a_3^{\gamma\gamma}$ are tested in $H \to 4\ell$

- To measure HVV anomalous couplings in spin-0, we report effective cross section fractions
 - Invariant under coupling notation and allows for full coverage

$$f_{\alpha 3} = \frac{|\alpha_3|^2 \sigma_3}{|\alpha_1|^2 \sigma_1 + |\alpha_2|^2 \sigma_2 + |\alpha_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4} \qquad \phi_{\alpha 3} = \arg\left(\frac{\alpha_3}{\alpha_1}\right)$$

- ► ZZ, $Z\gamma^*$, and $\gamma^*\gamma^*$ are tested when amplitude ratio is real $(\phi_{ai} = 0 \text{ or } \pi)$ (e.g. $\phi_{ai} = 0$ is SM)
- $H \rightarrow 4\ell$ measures ZZ couplings by profiling the phase as well

 $H \rightarrow 4\ell$ lifetime and quantum numbers

Christopher B. Martin (JHU)

- ► Techniques used to study 11 anomalous couplings HZZ, HZ γ , H $\gamma\gamma$, HWW, HZZ + HWW
 - $HZ\gamma$ ($H\gamma\gamma$) limits are 170(730)× SM expectations

All measurements consistent with the SM Higgs Boson $J^{CP} = 0^{++}$

arXiv:1411.3441

$$\Delta r = \overline{r_{4l}} - \overline{r_{ref}}$$
$$\Delta t \equiv \frac{m_{4l}}{p_T} \left(\overline{\Delta r_\perp} \cdot \widehat{p_T} \right)$$

Ref.: Primary (production) vertex or beam spot

• Average Δt is inversely proportional to the width

$$\langle \Delta t \rangle = \tau_H = \frac{\hbar}{\Gamma_H}$$

- ▶ 105.6 < m_{4ℓ} < 140.6 GeV
- D_{bkg} as spin-parity

CMS

Events / 0.05

20

15

10

5

- $c \cdot \Delta t$ (Shown for $D_{bkg} > 0.5$)
 - p_T an input (Shown $D_{\rm bkg} > 0.5$)

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV)

• Fit for direct constraint on τ_H

Observed

SM

lz+x

02

õ 4

0.6

0.8

ZZ/Zγ*

····· f_{a3}=1

Christopher B. Martin (JHU)

 $H \rightarrow 4\ell$ lifetime and quantum numbers

D_{bkg}

Events / 40 μm

- Observed(expected) limit on lifetime
 - $c \cdot \tau_H < 57(56) \mu m$ at 95% CL
 - Translates to $\Gamma_H > 3.5(3.6) \times 10^{-9}$ MeV
- Not sensitive to SM prediction of $c \cdot \tau_H \sim 48 fm$

$$\sigma_{gg \rightarrow H \rightarrow ZZ}^{On-Peak} = c rac{g_{ggH}^2 g_{HZZ}^2}{\Gamma_H}$$

$$\sigma_{gg \rightarrow H \rightarrow ZZ}^{O \textit{ff}-Peak} = \textit{C}' g_{ggH}^2 g_{HZZ}^2$$

Measuring width translates to measuring the lifetime

- On-Peak signal scales with $\mu = \sigma / \sigma_{SM}$
- Off-Peak signal scales with $\mu * \Gamma_H / \Gamma_H^{SM}$
- Interference scales with $\sqrt{\mu * \Gamma_H / \Gamma_H^{SM}}$

Christopher B. Martin (JHU)

 $H \rightarrow 4\ell$ lifetime and quantum numbers

- Use Signal Strength and Production Mechanism from 4^l On-Peak
- Relate Low Mass Results and High Mass results
 - Γ_H is the only free parameter when On-Peak and Off-Peak are combined
- CMS 19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) ¹⁰ -7 ⊓L Off-Peak 41 observed $\Gamma_H < 33 \text{ MeV}$ at 95% C.L. ----- 4l expected Expected < 42 MeV at 95% C.L. $H \rightarrow 77$ On-Peak 95% CI $\Gamma_{H} < 3.4 \text{ GeV}$ at 95% C.L. • Predicted at $m_H = 125.6 \text{ GeV}$: $\Gamma_{\mu}^{SM} = 4.16 MeV$ 68% CI arXiv:1405.3455 30 50 60 Г_н (MeV)

$$f_{\Lambda Q} = \frac{m_H^4/\Lambda_Q^4}{|a_1|^2 + m_H^4/\Lambda_Q^4}$$

Off-Peak Event Categorization

Category	Mass region	Criterion	Observables \vec{x}		
Width, on-shell dijet	$105.6 < m_{4\ell} < 140.6 { m GeV}$	$N_{\rm jet} \ge 2$	$m_{4\ell}$	\mathcal{D}_{bkg}^{kin}	\mathcal{D}_{jet}
Width, on-shell nondijet	$105.6 < m_{4\ell} < 140.6 { m GeV}$	$N_{\rm jet} < 2$	$m_{4\ell}$	\mathcal{D}_{bka}^{kin}	p_{T}
Width, off-shell dijet	$220 < m_{4\ell} < 1600 { m GeV}$	$\mathcal{D}_{\text{iet}} \ge 0.5$	$m_{4\ell}$	\mathcal{D}_{gg}	
Width, off-shell nondijet	$220 < m_{4\ell} < 1600 { m GeV}$	$\dot{\mathcal{D}_{iet}} < 0.5$	$m_{4\ell}$	\mathcal{D}_{gg}	

- f_{AQ} and Γ_H have similar off-peak effects
- ► VBF categorization key due to increased $f_{\Lambda Q}$ contribution
- \mathcal{D}_{jet} untangles VBF from H+jj
 - Kinematics of Jets

$$\mathcal{D}_{jet} = \left[1 + \frac{\mathcal{P}_{HJJ}(\vec{\Omega}^{H+JJ}, m_{4\ell})}{\mathcal{P}_{VBF}(\vec{\Omega}^{H+JJ}, m_{4\ell})}\right]^{-1}$$

Christopher B. Martin (JHU) $H \rightarrow 4\ell$ lifetime and quantum numbers

Christopher B. Martin (JHU)

 $H \rightarrow 4\ell$ lifetime and quantum numbers

Conclusion: What did we find?

- All measurements consistent with the SM Higgs Boson
 - $J^{CP} = 0^{++}$
 - $\Gamma_H \sim 4 \text{ MeV}$
- CMS produced most comprehensive set of HVV coupling (& tensor structure) measurements to date.
- New Results on lifetime/width
 - CMS shows: $26MeV > \Gamma_H > 3.5 \times 10^{-9} \text{ MeV}$
 - Interplay of Off-Peak and & On-Peak measurements fruitfull
- \blacktriangleright Many results are stat. limited \rightarrow promising for Run-2 & beyond
 - ▶ Will the new boson tell us something about *CP* violation?
 - Is this THE HIGGS BOSON or something else?

- "Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV", CMS collaboration, doi = "10.1103/PhysRevD.92.012004", arXiv:1411.3441 (hep-ex)
- "Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs", CMS collaboration, doi = "10.1016/j.physletb.2014.06.077", arXiv:1405.3455 (hep-ex)
- "Limits on the Higgs boson lifetime and width from its decay to four charged leptons", CMS collaboration, Submitted to PRD, arXiv: 1507.06656 (hep-ex)

🎇 Spin-0 HZZ Constraints (2/2)

Christopher B. Martin (JHU)

 $H \rightarrow 4\ell$ lifetime and quantum numbers

- $\blacktriangleright~H \rightarrow WW \rightarrow \ell \nu \ell \nu$ kinematics described by lepton momenta and MET
 - Build 2D p.d.f. of $[M_T, m_{\ell\ell}]$
 - Fit spin-0 HVV anomalous couplings
 - Spin-2 Example shown here for demonstration purposes.

Spin-0 Constraints (ZZ+WW)

) $H \rightarrow 4\ell$ lifetime and quantum numbers

Christopher B. Martin (JHU)

Christopher B. Martin (JHU)

- $H \rightarrow ZZ \rightarrow 4\ell$ at CMS
 - The most sensitive at 125 GeV
 - High Signal to Background ratio (1 : 1)
 - No Missing Energy
 - Well understood backgrounds

Muons

- Muon Spectrometer: muon track identification
- Silicon tracker: inner track identification

- Electrons
 - Electromagnetic Calorimeter: energy deposit
 - Silicon tracker: inner track identification

${ ightarrow} H o Z\!Z o 4\ell$ Analysis at CMS

- Triggers: dilepton & tri-electron
- Analysis Region:
 m_{4l} > 110 GeV
- Z candidates
 - Z₁ candidate: 40 < m_{Z1} < 120 GeV
 </p>
 - Z₂ candidate:
 12 < m_{Z2} < 120 GeV
- Backgrounds
 - $q\bar{q} \rightarrow ZZ \& gg \rightarrow ZZ$ from Monte Carlo
 - Reducible from Data
 (Z + bb, Z + tt̄,
 Z + Jets, WZ + Jets)

 $g(\overline{q})$

- 5 angles + m_{Z_1} + m_{Z_2}
 - Fully describes the decay kinematics in center of mass frame
 - Create MELA (Matrix Element Likelihood Approach) discriminant to determine signal from background
 - JHUGen, analytical Signal, MCFM - Background

g(q)

 \mathcal{D}_{bkg}^{kin}

🎇 The Compact Muon Solenoid

- ► Triggers:
 - 2 Electrons $p_T > 17, 8 \text{ GeV}$
 - 2 Muons $p_T > 17, 8 \, \text{GeV}$
 - Electron + Muon $p_T > 17, 8 \text{ GeV}$
 - 3 Electrons $p_T > 17, 8, 5 \text{ GeV}$
- Leptons
 - Electrons: Particle Flow Identification
 - Clusters of Energy in ECAL + Track in Silicon Tracker
 - $p_T^e > 7 \text{ GeV } \& |\eta^e| < 2.5$
 - Muons: Particle Flow Identification
 - ► Track in Muon Spectrometer + Track in Silicon Tracker
 - $p_T^{\mu} > 5 \, \text{GeV} \& |\eta^{\mu}| < 2.4$
 - Well Isolated ($\Delta R < 0.4$) & from Primary Vertex (SIP_{3D} < 4)
 - Final State Radiation merged back into leptons
- Jets: Particle Flow
 - Anti- k_T clustering algorithm, D = 0.5
 - $p_{T}^{jet} > 30 \, {
 m GeV} \, \& \, |\eta^{jet}| \, < \, 4.7$

- Z_1 pair of OS SF leptons with mass closest to m_Z ($40 < m_{\ell\ell} < 120 \,\text{GeV}$)
- Remaining pair of OS SF with highest sum of p_T becomes Z_2 (12 < $m_{\ell\ell}$ < 120 GeV)
- \blacktriangleright At least one lepton with $p_T > 20 \, \text{GeV}$ and another with $p_T > 10 \, \text{GeV}$
- Any OS pair must have $m_{\ell\ell} > 4 \, {
 m GeV}$

- $Zb\bar{b}$, $Zt\bar{t}$, Z + Jets, WZ + Jets
- Estimate from control regions
 - ► *Z* + 2*SS*
 - Z_1 and 2 SS,SF both fail
 - Correct for e's from γ conversion

 $\blacktriangleright Z + 2OS$

- Z₁ and 2 OS, SF both fail
- Z1 and 2 OS, SF with one pass and one fail

🎇 Alternative Spin-1 & 2 Boson

Spin-1 Amplitude

 $A(X_{J=1} \rightarrow V_1 V_2) \sim b_1 \left[\left(\epsilon_{V_1}^* q \right) \left(\epsilon_{V_2}^* \epsilon_X \right) + \left(\epsilon_{V_2}^* q \right) \left(\epsilon_{V_1}^* \epsilon_X \right) \right] + b_2 \epsilon_{\alpha \mu \nu \beta} \epsilon_X^\alpha \epsilon_{V_1}^{*\mu} \epsilon_{V_2}^{*\nu} \tilde{q}^\beta$

- > ZZ tests any fraction of vector(b_1) & pseudo-vector(b_2) for $q\bar{q}$ production and prod. indep.
- WW tests pure states with qq
 production
- Spin-2 Amplitude

$$\begin{split} & A(X_{J=2} \rightarrow V_1 V_2) \sim \Lambda^{-1} \left[2c_1 t_{\mu\nu} t^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2c_2 t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} t^{*1,\mu\alpha} f^{*2,\nu\beta} \right. \\ & \left. + c_3 \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} (t^{*1,\mu\nu} t^{*2}_{\mu\alpha} + t^{*2,\mu\nu} t^{*1}_{\mu\alpha}) + c_4 \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} t^{*1,\alpha\beta} t^{*(2)}_{\alpha\beta} \right. \\ & \left. + m_V^2 \left(2c_5 t_{\mu\nu} \epsilon^{*\mu}_{V_1} \epsilon^{*\nu}_{V_2} + 2c_6 \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} \left(\epsilon^{*\nu}_{V_1} \epsilon^{*\alpha}_{V_2} - \epsilon^{*\alpha}_{V_1} \epsilon^{*\nu}_{V_2} \right) + c_7 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon^{*}_{V_1} \epsilon^{*}_{V_2} \right) \right. \\ & \left. + c_8 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} t^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + c_9 t^{\mu\alpha} \tilde{q}_\alpha \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu}_{V_1} \epsilon^{*\rho}_{V_2} q^\sigma \right. \\ & \left. + \frac{c_{10} t^{\mu\alpha} \tilde{q}_\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma \left(\epsilon^{*\nu}_{V_1} (q\epsilon^{*}_{V_2}) + \epsilon^{*\nu}_{V_2} (q\epsilon^{*\nu}_{V_1}) \right) \right] \end{split}$$

- ZZ tests three production modes (gg, $q\bar{q}$, prod. indep.)
- WW tests as a function of $q\bar{q}$ contribution
- $\gamma\gamma$ tests 2_m^+ (c₁ = c₅) as a function of $q\bar{q}$ contribution

Christopher B. Martin (JHU)

 $H \rightarrow 4\ell$ lifetime and quantum numbers

- ► Events < 2 jets
 - Use p₁^{4ℓ} to discriminate VBF, ggH, ZZ

Events > 2 jets

Discriminant from m_{ii} &

 $\Delta \eta_{ii}$ to separate

- We found a particle!
- At $m_H = 125.7 \text{ GeV}$ local significance
- local signif. = 6.8σ
- Expected: 6.7σ

- Full search excludes a wide range
- Expected: 115 740 GeV

114.5 – 119.0 GeV U

Observed:

Other final states much more constraining. All measurements consistent with the Higgs Boson

Christopher B. Martin (JHU)