Design Study of the Options for the ATLAS Muon Drift Tube (MDT) Electronics for Phase-II

Jay Chapman, Junjie Zhu, Tom Schwarz, Aaron White, and Xianting Meng University of Michigan, Ann Arbor

Goals (of the work & presentation)

- Characterize each design being considered for a new MDT front-end
- Simulate the latency for data arriving at USA-15 for MDT trigger
- Determine any bottlenecks in the flow of data
- Check the bandwidth available with the existing cables
- Determine the highest tube rate sustainable with each option
- Examine the capability of the current (legacy) electronics
- Show cable tests of the current mezzanine to CSM cables

Front-end Cards Now

CSM (second multiplexer) Now

Latency in the Current CSM Readout

Design Methodology for Simulation

- Not a Design but an Evaluation & Consideration of Options
- A Specific Design is considered but it is not chosen at this time
- Detailed Electronics implemented in Behavioral Verilog
- Data Rates taken from Physics MC or extrapolated measurements
- Data Movement times (Latency) evaluated for realistic data rates
 - Starting time represented as BCID + sub-BCID (0.78ns) at it arrival #1
 - Ending time represented as BCID when hit handed off to fiber driver #4
 - For complete transit time need to add fiber transit time and receiver time
- Data Buffer requirements evaluated

Why Consider Send-Immediately Design

- The ~800ns MDT drift time & 1 MHz L0 trigger selects everything!
 - Current design selects a 1μs window each trigger. Overlaps read same hits!
- A single path for trigger & data is simple if fast enough.
- Current mezzanines send data on one pair at 80 MHz bit rate
- Cables have 2 pairs available: Will show test to 320 MHz
- Generate random hits at rates up to 400 KHz/tube
 - Multiplex these hits from 24 channels into RAM and onto 2 pairs to CSM
 - Receive & multiplex the 18 mezzanines into CSM RAM & onto fast fiber
- Examine the distribution of transfer times, hit time to fiber entry
- Determine the highest tube rate that can be sustained

Current Cables Tested to 320MHz

Setup for BER test

- ◆ Kintex-7 Evaluation board used as a Bit Error Ratio (BER) Tester.
- ◆ CSM cable test board is used for cable test interfaces. Four differential pairs(CH1-CH4) of cable can be tested at the same time by using test board.
- ◆ Cable's length is 1.33 m.

Eye diagram measurements for 1.33m cable

- At the beginning, we tested CH1's eye diagram. No data transmission in other channels.
- Next, tested CH1's eye diagram again. This time, there is data transmission in CH2 at the speed of 320Mbps and no data transmission in CH3 and CH4.
- Even if data transmit in CH2 at 320Mbps, CH1's eye diagram is also good.

BER results for 1.33m cable

- We have run the BER test program in four channels with different data pattern at the speed of 320Mbps about 67 hours.
- Results are listed below:

Channel	Data pattern	Polynomial	Data bits	Errors	BER
CH1	PRBS31	X ³¹ +X ²⁸ +1	7.76E13	0	1.29E-14
CH2	PRBS31	$X^{31}+X^{29}+1$	7.76E13	0	1.29E-14
CH3	PRBS29	X ²⁹ +X ²⁷ +1	7.76E13	0	1.29E-14
CH4	PRBS23	X ²³ +X ¹⁸ +1	7.76E13	0	1.29E-14

Design Considered in Simulation

New CSM, Much the Same

8/5/2015 Send All Scheme

New Trigger Match in USA-15

Simulation Details (4 separate entries)

- #1 Hit bcid=1 tdc=15 chan=12 sub=26 amp=21 (time #1 of hit with channel, tdc, sub-time, & amplitude)
- #2 Hit bcid=1 tdc=8 chan=18 sub=8 amp=18
- #3 Hit bcid=1 tdc=6 chan=20 sub=17 amp=12
- #4 Hit bcid=1 tdc=0 chan=19 sub=18 amp=13
- #1 Into TDC RAM=2 bcid=1 tdc=15 chan=12 sub=26 amp=21 (time #2 of entry into TDC RAM & data unit for hit as before)
- #2 Into TDC RAM=3 bcid=1 tdc=8 chan=18 sub=8 amp=18
- #4 Into TDC RAM=3 bcid=1 tdc=0 chan=19 sub=18 amp=13
- #3 Into TDC RAM=3 bcid=1 tdc=6 chan=20 sub=17 amp=12
- #1 Into CSM RAM=7 bcid=1 tdc=15 chan=12 sub=26 amp=21 (time #3 of entry into CSM RAM & data unit for hit as before)
- #4 Into CSM RAM=7 bcid=1 tdc=0 chan=19 sub=18 amp=13
- #1 Exit CSM RAM=7 bcid=1 tdc=15 chan=12 sub=26 amp=21 (time #4 of exit from CSM RAM & data unit for hit as before)
- #4 Exit CSM RAM=8 bcid=1 tdc=0 chan=19 sub=18 amp=13
- #2 Into CSM RAM=8 bcid=1 tdc=8 chan=18 sub=8 amp=18
- #2 Exit CSM RAM=9 bcid=1 tdc=8 chan=18 sub=8 amp=18
- #3 Into CSM RAM=10 bcid=1 tdc=6 chan=20 sub=17 amp=12
- #3 Exit CSM RAM=11 bcid=1 tdc=6 chan=20 sub=17 amp=12

TDC Internal Latency

Latency to Enter TDC RAM – mostly the TDC polling multiplexer

Latency to Enter CSM RAM

Latency to Enter CSM RAM – mostly 2 serial lines & CSM Polling Multiplexer

Latency Exiting CSM at 160MHz

Latency after 50µs & 100µs

Latency at 14.4% over Nominal 200KHz Tube Rate

Latency after $50\mu s$, $100\mu s$, & $150\mu s$

Latency at 46% over Nominal after 50μs, 100μs, & 150μs This is the highest rate for which the latency does not grow.

Latency for Overload Rates

What's Next for Simulation

- Look at the bandwidth balance along the data flow chain
 - Tube rate max at 200 KHz/tube = 0.14 hits/crx/tdc = 2.44 hits/crx/chamber
 - 640 MB/s from each mezzanine = 11 GB/s composite rate
 - 5.1 GB/s CSM to USA-15 saturates at 4 hits per chamber per crossing
 - Note that 300 KHz/tube = 3.4 hits/crx/chamber, latency grows unbounded
- How might we go beyond 300 KHz/tube rate?
 - Change mezzanine cables to fast twinax (MiniDisplay Port)
 - Change to lpGBT at 9.6 GB/s CSM to USA-15
 - Change from polling multiplexer to token passing at TDC & CSM
 - Separate trigger & readout data paths
- We examined these options

What does this look like with Fast Serial Line?

8/5/2015

Latency after 50µs & 100µs

Latency with Fast Mezzanine to CSM cable

At 9.6 GB/s lpGBT "great" at 400 KHz/tube

Latency after 50µs at 2x Nominal = 400 KHz/tube with Fast mezzanine to CSM cables

What about Existing Cables?

Latency after 50µs at 400 KHz/tube blue = fast cable mezz to CSM red=current pairs

26

What can be done for inaccessible chambers?

- We have a test setup that can be run in "No Match Mode" (AMT)
 - LO at MHz is not much different than reading everything.
 - Problem with encoded trigger (only every 3rd) goes away
 - Buffer overflow is likely to be less problematic since we don't hold anything.
- Read actual hardware in "No Match Mode" & determine latency
- Run the simulation at speed of current electronics to compare results
- We check latency to USA-15 for inclusion in L1 trigger match.
- The bottleneck will be the single pair mezzanine to CSM at 80 MHz.
- This is 100 KHz/tube. Simulation will tell us the maximum latency.

Existing Electronics in "no match mode"

Current MDT Readout Latency

Simulation & Hardware Comparison

Low Rate Comparison Hardware (Grey) & Simulation (Red) for Current AMT System

Backup Slides

Begin with a Full Simulation for a Send-All Design

- A simulation based on HDL (hardware description language)
 - Simulate the detector output & describe how it flows clock tick by clock tick
 - Examine the buffer occupancy at each stage in the data chain
 - Calculate the transit time (latency) from the original hit to its arrival in USA-15
 - Look at the distribution of latency times for all anticipated rates
 - Note this same code can serve to develop the design once it is accepted
- Build nothing until the design meets the requirements
- Optimize the design wherever there is a bottleneck in the flow
- Target goal for Phase II needs to handle 200 KHz/tube
- Note this was done for the current MDT which behaves as simulated

Summary of Hardware Testing

- Timing summary, Triggerless
 - Serial_to_parallel at CSM complete 860-880ns (34-35)
 - Data ready at output of RAM in CSM 1160-1330ns (46-53)
 - Data presented to GOL for transmission 1700-1800ns (68-72)
 - Compare to simulation where median for low rates is at 40 (1000ns)
- Timing summary, Triggered
 - Serial_to_parallel at CSM complete 2600ns (104)
 - Data ready at output of BRAM 2900-3100ns (116-124)
 - Data presented to GOL for transmission 3500-3600ns (140-144)

Characteristics of Simulation Runs

- First set of runs
 - Polling Multiplexers running at 320 MHz
 - Two mezzanine to CSM pairs running at 320 MB/s
 - Outgoing fiber 32- bit words loaded at 160 MHz
- Final set of runs
 - Polling Multiplexers running at 320 MHz
 - Two mezzanine to CSM pairs running at 320 MB/s
 - Outgoing fiber 32- bit words loaded at 320 MHz

Simulate what for BIS78 is the Question?

- Others (MPI, Rome 1, Rome 2, Napoli, Bologna, & USTC)
 - system layout, mechanics, integration, trigger, station assembly and test
- UMICH 2.5 FTE out of 4 Physicists and Engineers
 - trigger & readout simulation, serializer, readout and DAQ
- concerning the FE design:
 - * 8ch FE chip
 - * 2 FE chips per board
 - * 1 16 ch TDC per board
 - * 1 serializer per board 4.8 GB/s (trigger & readout)
 - * Concerning the TDC, 32 channel HPTDC mentioned?

Example Screenshot

Estimate of Minimal Time (ns) to USA-15

8/5/2015 Send All Scheme 36

Questa Modules for Simulation

Existing Electronics in "no match mode"

Latency at 56 KHz/tube for Current AMT

Existing Electronics in "no match mode"

Current MDT Readout Latency

What's Next for Simulation

- Look at the bandwidth balance along the data flow chain
 - Tube rate max at 200 KHz/tube = 0.14 hits/crx/tdc = 2.44 hits/crx/chamber
 - 640 MB/s from each mezzanine = 11 GB/s composite rate
 - 5.1 GB/s CSM to USA-15 saturates at 4 hits per chamber per crossing
 - Note that 300 KHz/tube = 3.4 hits/crx/chamber, latency grows unbounded
- How might we go beyond 300 KHz/tube rate?
 - Change mezzanine cables to fast twinax (MiniDisplay Port)
 - Change to lpGBT at 9.6 GB/s CSM to USA-15
 - Change from polling multiplexer to token passing at TDC & CSM
 - Separate trigger & readout data paths
- We are examining these options

Buffer Occupancy at 50% Above Nominal to 2x Nominal

