

Status of PandaX and the results from PandaX-I

Andi Tan University of Maryland, College Park (On behave of the PandaX Collaboration)

PandaX collaboration, since 2009

PandaX: Particle AND Astrophysical Xenon experiment

China:

Shanghai Jiao Tong University $(2009 \sim)$

Shanghai Institute of Applied Physics, CAS (2009~)

Shandong University $(2009 \sim)$

Peking University $(2009 \sim)$

Yalong River Hydropower Development Co. $(2009 \sim)$

University of Science and Technology of China (2015 \sim)

China Institute of Atomic Energy ($2015 \sim$)

USA:

University of Maryland(2009 \sim)

University of Michigan(2011~2015)

China Jin-Ping underground Laboratory

Depth	6800 mwe
Muon Flux	60 evn/m2/year
Rock	Marble
²³⁸ U	1.8±0.2 Bq/kg
²³² Th	<0.27 Bq/kg
⁴⁰ K	<1.1 Bq/kg

Chinese Phys. C. 37 (2013) 086001 J Radioanal Nucl Chem. 301 (2014) 443–450

PandaX-I Milestones

Aug. 16, 2012, apparatus arriving CJPL

Mar. 2014: Physics data taking

Mar. 2013: Commissioning

Detector: External shielding

Rn Level < 5 Bq/m^3

Rn purge with N₂ gas

Detector: Cryogenic system

PandaX-I first results

- 17 live-day X FV mass 37kg released in summer 2014
- Our results disfavor previously positive signals
- At low mass region, our results significantly better than XENON100 first results with similar exposure

Full dark matter run: May 26 to Oct. 16

arXiv:1505.00771, submitted to Phys. Rev. D

- 80.1 live-day x fiducial mass 54 kg (x7 exposure)
- FV and energy window defined blindly using background expectation!
- Calibrations with much larger statistics (ER/NR)
- Updated energy modeling at low recoil energy and improved treatment to low mass WIMPs
- Better understanding/modeling of background
- Likelihood approach to final results

Anti-correlation between S1 and S2

 $E_{ee}^{ce} = w(\frac{S1}{PDE} + \frac{S2}{gas gain \times EEE})$

<u>W = 13.7 eV (global fit)</u>

Photon detection efficiency (PDE): 9.55(1.0)%

Electron extraction efficiency (EEE): 82.1(7.4)%

ER/NR Calibration

ER band

NR band

Vertex Distribution

PMT and inner vessel dominates the background

Data and MC agree well

DM candidate events

DM limits

- Profile likelihood fit using DM and background distribution
- DM mass dependent efficiency taking into account
- Using NEST as the NR energy model

Conclusions from PandaX-I Experiment

- Full exposure results with a much more elaborated analysis confirmed the finding from the first results, strongly disfavoring all positive WIMP claims
- Tighter bound than superCDMS above WIMP mass of 7 GeV/c²
- Best reported WIMP limits below 5.5 GeV/c² in xenon community

PandaX II Experiment

- Started construction in June 2014
- Completed detector assembly in CJPL Mar 2015
- Presently under commissioning
- Physics run starts this year
- Expected running time: 1-2 years

500kg TPC in construction

Summary

- The PandaX project has made rapid progress over the past few years
- PandaX-I has completed with results strongly disfavoring all positive WIMP claims
- Good sensitivity down to very low recoil energy using Xenon detectors
- Learn A LOT from PandaX-I experience
- PandaX-II data imminent, stay tuned for future excitement!

Thank you!!!

Backup Slides

Comparison with NEST model

NEST prediction consistent with our measurement within uncertainty Energy resolution of detector is not bad!

Accidental Background

Isolated S1 and S2 events

Dark matter PDF

$$\Pi_{i=1}^{i=N_m} \left[\frac{N_{DM}(1+\delta_{DM})P_{DM}(s_1^i, s_2^i)\epsilon_{NR}(s_1^i, s_2^i)}{N_{exp}} \right]$$

$$N_{DM,exp} = M_{target}T \int_0^\infty \frac{dR}{dE_{nr}} \, dE_{nr}$$

Function of (m $_{\chi}$, $\sigma_{\chi,n}$)

PandaX-II Sensitivity Projection

