

Recent D0 Measurements of Forward-Backward Asymmetries for $p\overline{p} \rightarrow B^{\pm}$, Λ_b^0 , & Λ_s^0 Production

Peter H. Garbincius - Fermilab for the D0 Collaboration APS Division of Particles and Fields Meeting University of Michigan, Ann Arbor, Michigan August 4-8, 2015 do secondary particles retain some "memory" of the direction of the primary parent particles?

Of course they do in the beam fragmentation region studied in Fixed Target and ISR experiments

What about for the central region near y = 0 for hadron colliders?

What mechanisms are at play for A_{FB}?

What is the transition between the central and beam fragmentation regions?

Outline

• *p*-*p* collisions at the Fermilab Tevatron

 $\sqrt{s} = 1.96 \text{ TeV}$ *D0*: 10.4 fb⁻¹ = full data set

- D0 is good place to study A_{FB}
- Motivation: interest in $A_{FB}(t-\overline{t}) \rightarrow A_{FB}(b-\overline{b})$
- A_{FB}(B[±]): Phys. Rev. Lett. 114, 051803 (2015) arXiv
- $A_{FB}(\Lambda_b^{0})$: Phys. Rev. D 91, 072008 (2015) arXiv

preliminary A_{FB}(Λ_s⁰): <u>D0 Note 6464-CONF (2015)</u>
 <u>http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B65/B65.pdf</u>

relation to some old-timey Fixed Target & ISR Physics

D0 is good place to study A_{FB}

- Symmetry of initial p-p state: B = 0, C = 0 two "fragmentation" hemispheres
- Symmetric detector (at least to first order...)
- Regularly flip polarities of solenoid & toroid magnets cancels many detector-related asymmetries

Motivation: (stolen from) Rick Van Kooten at the Fermilab Users Meeting, June, 2015

Forward-Backward *t t* Asymmetries

$$Q = t$$

000000

interf.

Once both CDF and DØ publish final

~15%

g

CDF: both t and \overline{t} decaying leptonically

SO,

0000

Forward-Backward $b\bar{b}$ Asymmetries

Q = b

 Forward-backward b quark asymmetry expected to be small

No $A_{\rm FB}$

D0 fully reconstructs

anti-proton fragmentation hemisphere

Dominant

00000

g

proton fragmentation hemisphere $B^{-}(\stackrel{\cdot}{b}\overline{u}) \rightarrow J/\psi K^{-} \text{ (forward b in p direction)}$ $\Lambda_{b}^{0}(u \ d \ b) \rightarrow J/\psi \Lambda_{s}^{0} \text{ (forward baryons in}$ $\Lambda_{s}^{0}(u \ d \ s) \rightarrow p \ \pi^{-} \qquad \text{in proton direction)}$ $production \ and/or \ fragmentation?$

Forward particles:

 $B^{-}, \Lambda_{b}^{0}, \Lambda_{s}^{0} \text{ with } y > 0$ $B^{+}, \Lambda_{b}^{0}, \Lambda_{s}^{0} \text{ with } y < 0$ Backward particles: $B^{+}, \Lambda_{b}^{0}, \Lambda_{s}^{0} \text{ with } y > 0$ $B^{-}, \Lambda_{b}^{0}, \Lambda_{s}^{0} \text{ with } y < 0$

$$\boldsymbol{A}_{FB} = \frac{\boldsymbol{\sigma}_F - \boldsymbol{\sigma}_B}{\boldsymbol{\sigma}_F + \boldsymbol{\sigma}_B} = \frac{Diff}{Sum}$$

we measure both *Particle* and *anti-Particle* and y < 0 and y > 0 hemispheres *simultaneously*

$$\mathbf{A}_{FB} = \frac{\sigma_{F}(Particle) + \sigma_{F}(anti-P) - \sigma_{B}(Particle) - \sigma_{B}(anti-P)}{\sigma_{F}(Particle) + \sigma_{F}(anti-P) + \sigma_{B}(Particle) + \sigma_{B}(anti-P)}$$

to assure no mixing of forward and backward hemispheres due to reconstruction errors,
we do not include particles with |y| < 0.1 or |η| < 0.1
> 99.9% of B[±] have same sign of η or y as the parent b-quark
The distribution of (η_{b-quark} – η_B) has an rms width of 0.11 unit.

 $B^{\pm} \rightarrow J/\psi K^{\pm}$ $J/\psi \rightarrow \mu^+ \mu^-$

 $p_{\tau}(\text{each }\mu) > 1.5 \text{ GeV}$ $p_{\tau}(K) > 0.7 \text{ GeV}$ 89,000 B^{\pm} unbinned likelihood fit, simultaneously for SUM and DIFF binned just for illustration purposes

SUM = Forward + Backward

This A_{FB}(B[±]) measurement is limited by the statistical uncertainty

TABLE I: Summary of uncertainties on $A_{\rm FB}(B^{\pm})$ in data.

Source	Uncertainty
Statistical	0.41%
Alternative BDTs and cuts	0.17%
Fit Variations	0.06%
Reconstruction Asymmetries	0.05%
Fit Bias	0.02%
Systematic Uncertainty	0.19%
Total Uncertainty	0.45%

integrated over $0.1 < |\eta| < 2$

$A_{FB}(B^{\pm}) = [-0.24 \pm 0.42 \text{ (stat)} \pm 0.19 \text{ (syst)}]\%$

no significant FB asymmetry

comparing A_{FB}(B[±]) with MC@NLO

Integrated over the range $0.1 < |\eta| < 2$

D0 measures $A_{FB}(B^{\pm}) = [-0.24 \pm 0.42 \text{ (stat)} \pm 0.19 \text{ (syst)}]\%$

MC@NLO simulates = [+2.31 ± 0.34 (stat) ± 0.44 (syst)]%

3.5 σ discrepancy! data is systematically < MC@NLO

comparing A_{FB}(B[±]) with MC@NLO

Integrated over the range $0.1 < |\eta| < 2$

data is systematically < MC@NLO

improved

 $J/\psi \rightarrow \mu^{+} \mu^{-}$ $\Lambda_{s}^{0} \rightarrow p \pi^{-}$ $A_{FB}(\Lambda_b^0) \quad \Lambda_b^0 \rightarrow J/\psi \Lambda_s^0$

Fit with binned maximum likelihood Gaussian signal + 2^{nd} order Chebyshev polynomial background Example of mass plots for 0.5 < |y| < 1 bin

fitted # Λ_b^0 + # $\overline{\Lambda}_b^0$ = 842 ± 49

 $A_{FB}(\Lambda_b^0) = 0.04 \pm 0.07 \text{ (stat)} \pm 0.02 \text{ (syst)}$

Integrated over 0.1 < |y| < 2 for <p_τ> = 9.9 GeV

baryons are more complicated Jon Rosner's **String Drag** $<\Delta p_z > =$ +1.4 GeV for Λ_b -1.4 GeV for $\overline{\Lambda}_b$

Heavy Quark Recombination Model

W.K. Lai and A.K. Leibovich, Phys. Rev. D91 054022 (2015)

recombination with beam di-quark into Λ_b^0

compare $y(\Lambda_b^0)$ to $y(beam) \rightarrow rapidity loss we find similar behavior for D0, CMS, LHCb$

$A_{FB}(\Lambda_s^0) \quad \Lambda \rightarrow p \pi^- plain, old \Lambda$

PRELIMINARY – yet not submitted for publication

Inclusive Λ for prescaled beam crossing or minimum bias triggers identify higher momentum particle as baryon (p or pbar) example of $p \pi^-$ mass spectrum $2 < p_{\tau}(\Lambda) < 25$ GeV

$A_{FB}(\Lambda_s^0)$ for $\mu^{\pm}\Lambda$ and $J/\psi \Lambda$ combos

- 2.3 M inclusive Λ
 0.7 M J/ψ Λ
 53 M μ Λ
- We combine all $\mu^+ + \mu^-$ with all $\Lambda + \overline{\Lambda}$ to form $A_{FB}(\mu\Lambda)$
- Very high μΛ statistics! There are some correlations between charge of μ[±] and Λ or Λ So what's the physics?
- Inclusive Λ , $\mu^{\pm}\Lambda$, and $J/\psi \Lambda$ all have similar behavior for $A_{FB}(|y|)$

preliminary D0, 10.4 fb⁻¹

universal curve? limiting fragmentation?

preliminary DØ, 10.4 fb⁻¹

things to remember about these D0 p-p̄ measurements of A_{FB}

- $A_{FB}(t-\bar{t}) \sim + 13\%$ over same rapidity range
 - motivated higher order calculations of SM to produce agreement with data
- $A_{FB}(B^{\pm}) \simeq 0$
 - MC@NLO predicts ~ 2%, C. Murphy calculation ~ 0
- $A_{FB}(\Lambda_b^0)$ is consistent with 0
 - need more statistics to differentiate between
 |y| dependence of String Drag or HQ Recombination
 - $R(\Lambda_b^{0})$ consistent w $R(\Delta y)$ dependence for CMS & LHCb
- $A_{FB}(\Lambda_s^0)$ increases with increasing rapidity |y|
 - Beginning of transition from central region at colliders to beam fragmentation region (FT and ISR)
 - Hints at a universal curve as function of $\Delta y = y_{\text{beam}} y_{\Lambda}$

D0 continues to produce results complementary to those of the LHC especially those unique to p-p collisions

stay tuned for more!

backup slides

for pp collisions

 $\sigma_{pp}(\Lambda, y) = \sigma_{pp}(\Lambda, -y)$ and $\sigma_{pp}(\overline{\Lambda}, y) = \sigma_{pp}(\overline{\Lambda}, -y)$

for $p\overline{p}$ collisions

 $\sigma_{p\overline{p}}(\Lambda,y) = \sigma_{p\overline{p}}(\overline{\Lambda},-y)$

Comparing to	o p-p at	LHC and	ISR	
for p-Nu	cleus @	Fixed Tar	aet)	
for fragmentation,	proton	proton beam \overline{p} beam		
not necessarily for	fragmer	fragmentation fragmentation		
central production	hemis	hemisphere hemisphere		
D _	$\sigma_{p-p}(\overline{\Lambda})$	σ _{<i>p-p</i>} (Λ,Β)	_σ _{¯<i>p-p</i>} (Λ,Β)	
note that	σ _{p-p} (Λ)	σ _{ρ-̄ρ} (Λ,F)	 σ(Λ,F)	
$R = \frac{1 - A_{FB}}{1 + A_{FB}}$	if indep	endent e	xpected if	
	of ta	rget	charge	
	(p, pbar,	, nucleus) s	ymmetric	

Garbincius_DPF2015_AFB-5.pptx 6aug2015