

Control penguin effect in $B_s \rightarrow J/\psi \phi$ at LHCb

Liming Zhang (Tsinghua University)

On behalf of LHCb Collaboration

CP violating phase ϕ_s

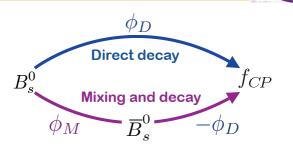
• Mixing induced *CPV* phase of B_s^0 :

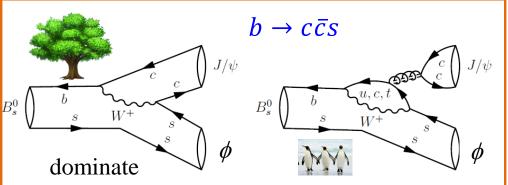
 $\phi_s = \phi_M - 2\phi_D$

• Theoretical uncertainty on ϕ_s is mainly due to penguin contributions $\Delta \phi_s^{\text{peng}}$:

$$\phi_s^{\rm SM} = -2\beta_s + \Delta\phi_s^{\rm peng}$$

$$-2\beta_s = 2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = -0.0365^{+0.0013}_{-0.0012} \text{ rad}$$



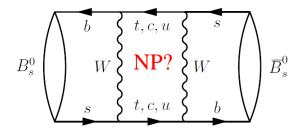


[CKMFitter, arXiv:1501.05013]

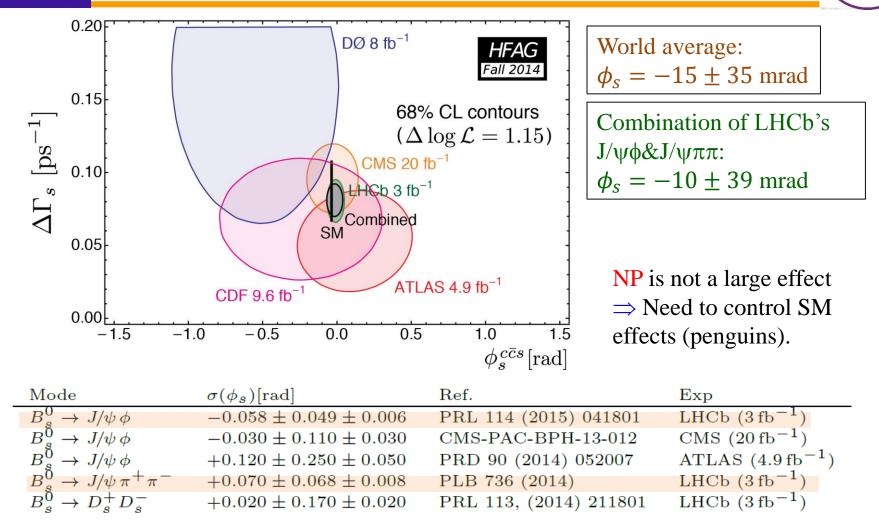
• New Physics (NP) in mixing box diagrams can modify ϕ_s :

$$\phi_s^{\text{meas}} = -2\beta_s + \Delta \phi_s^{\text{peng}} + \delta^{\text{NF}}$$

$$\Rightarrow \text{We should control } \Delta \phi_s^{\text{peng}}$$

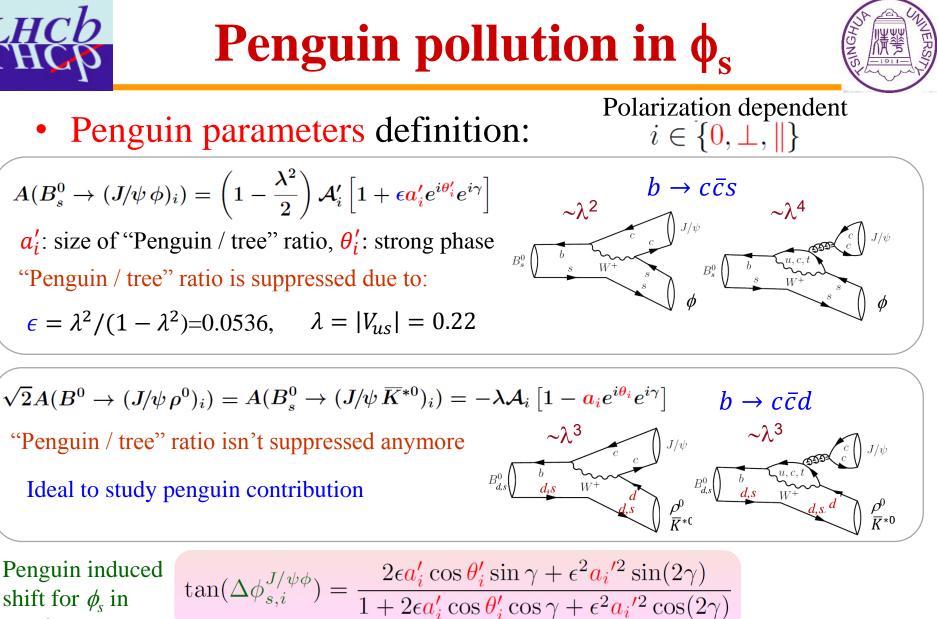


World average on ϕ_s



Recent updated ATLAS result (20fb⁻¹) : $\phi_s = -0.075 \pm 0.097 \pm 0.031 \text{ rad } [arXiv:1507.07527]$

- Penguin contributions can't be calculated reliably from QCD
- Experimental tools, decays via b → ccd can be used as penguin/tree amplitude ratio is enhanced.
 [arXiv:0809.0842 & 0810.4248 & 1412.6834]
- LHCb used $B^0 \to J/\psi \rho^0$ and $B_s^0 \to J/\psi \overline{K}^{*0}$ (New!)



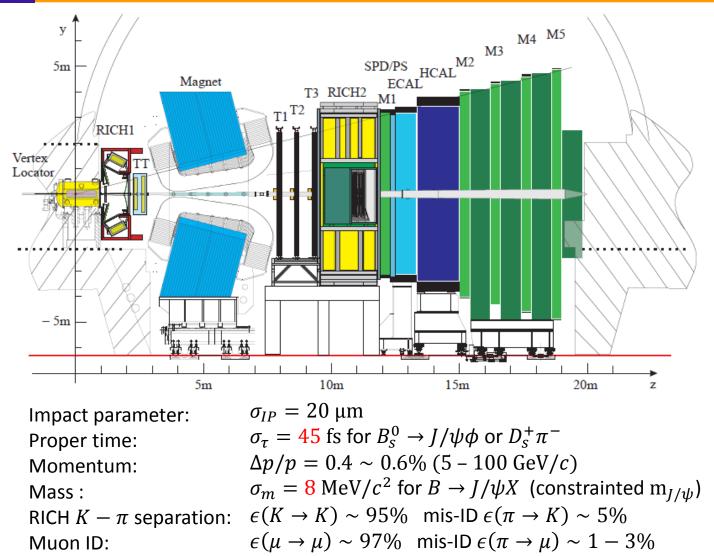
Assuming perfect SU(3) flavor symmetry: $a'_i = a_i$, $\theta'_i = \theta_i$

L. Zhang

 $J/\psi\phi$

SU(3) breaking for $a' = a \& \theta' = \theta$ need to considered

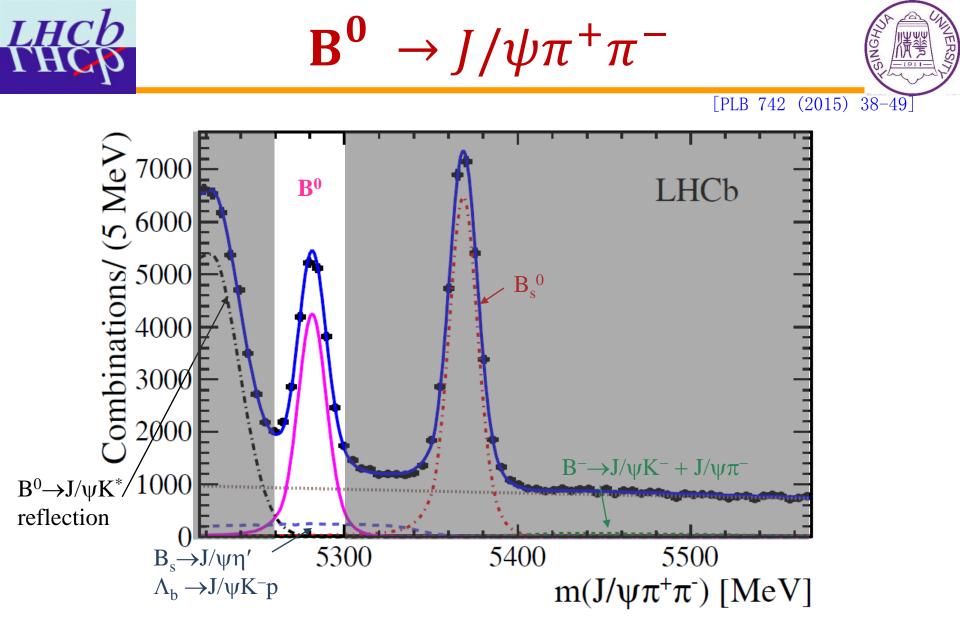
LHCb detector



 $\Delta E/E = 1 \oplus 10\%/\sqrt{E(\text{GeV})}$

ECAL:

$B^0 \rightarrow J/\psi \rho^0$



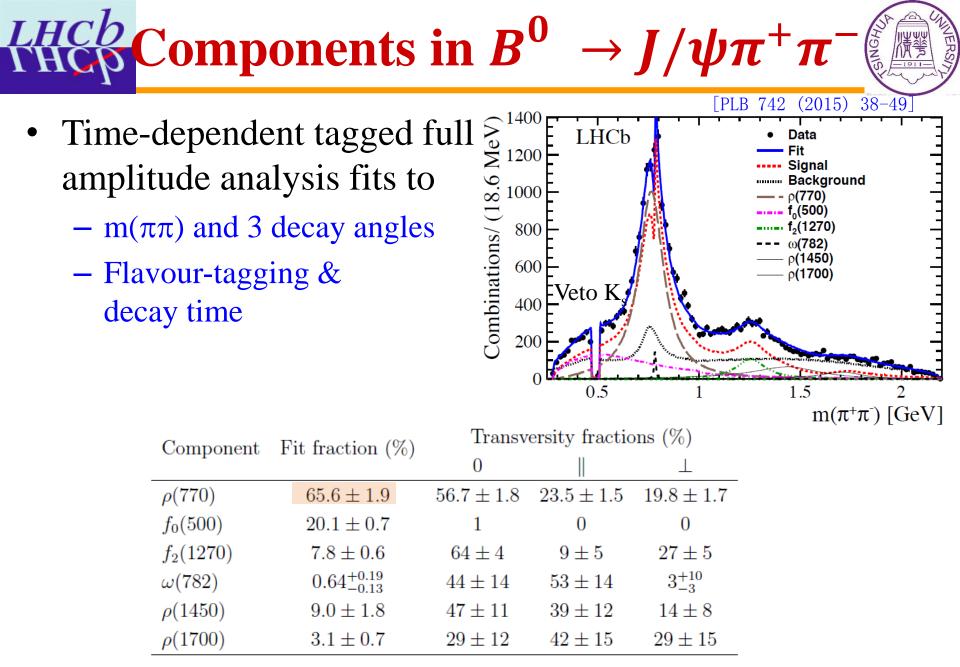
• ± 20 MeV of peaks: 17650 B⁰ signal purity 65%

Initial \vec{B}_a^0 decay to self-charge-conjugated final states $J/\psi h^+h^ \Gamma(t, m_{hh}, \Omega) = \mathcal{N}e^{-\Gamma \cdot t} \left\{ \frac{|\mathcal{A}|^2 + |\overline{\mathcal{A}}|^2}{2} \cosh \frac{\Delta \Gamma \cdot t}{2} \pm \frac{|\mathcal{A}|^2 - |\overline{\mathcal{A}}|^2}{2} \cos(\Delta m \cdot t) \right\}$ $-\mathcal{R}e(\mathcal{A}^*\overline{\mathcal{A}})\sinh\frac{\Delta\Gamma t}{2} \stackrel{+}{=} \mathcal{I}m(\mathcal{A}_{\perp}^*\overline{\mathcal{A}})\sin(\Delta m t)\bigg\}$ *CPV* phase mainly enters $\mathcal{A} \equiv \sum A_i$ Total resonant transversity amplitudes of B_q^0 decays at t = 0The amplitudes are function of m_{hh} and $\overline{\mathcal{A}} \equiv \sum_{i} \frac{q}{p} \overline{A}_{i} = \sum_{i} \lambda_{i} A_{i}$ three decay angles $\Omega = (\cos \theta_{hh}, \cos \theta_{J/\psi}, \chi)$ $\lambda_i \equiv \frac{q}{p} \frac{\overline{A}_i}{A_i} \qquad \arg(\eta_i \lambda_i) \equiv -\phi_q^i$ $h^+h^ B^0_s$ $\mu^+\mu^-$ **CPV** parameter

> measure CPV phase ϕ_q^i and magnitude $|\lambda_i|$ *i* can be polarization dependent for each resonance

 η_i is CP eigenvalue for amplitude A_i

[Zhang&Stone PLB 719 (2013) 383]



LHCb Measurements of CP asymmetry

Polarization-independent results

$$\begin{split} \phi_d^{J/\psi\rho^0} &= (41.7 \pm 9.6^{+2.8}_{-6.3})^\circ, \\ \alpha_{CP} &\equiv \frac{1 - |\lambda_i|}{1 + |\lambda_i|} \\ &= (-32 \pm 28^{+9}_{-7}) \times 10^{-3} \end{split}$$

$$\Rightarrow \phi_d^{J/\psi\rho^0} - \phi_d^{J/\psi K^0} = (-0.9 \pm 9.7^{+2.8}_{-6.3})^{\circ}$$

polarization-dependent results

[PLB 742 (2015) 38-49]

$\phi_{d,i}^{J/v}$	p^{ρ^0} [degrees]	α_C^i	$_{P}[\times 10^{-3}]$
$ ho_0$	$44.1 \pm 10.2^{+3.0}_{-6.9}$	$ ho_0$	$-47 \pm 34^{+11}_{-10}$
$\rho_{\parallel}-\rho_{0}$	$-0.8 \pm 6.5^{+1.9}_{-1.3}$	$ ho_{\parallel}$	$-61 \pm 60^{+8}_{-6}$
$\rho_{\perp} - \rho_0$	$-3.6\pm7.2^{+2.0}_{-1.4}$	$ ho_\perp$	$17 \pm 109^{+22}_{-15}$

Consistent with no polarization-dependence

LHCB Measurements of CP asymmetry

Polarization-independent results

$$\phi_d^{J/\psi\rho^0} = (41.7 \pm 9.6^{+2.8}_{-6.3})^\circ,$$

$$\alpha_{CP} \equiv \frac{1 - |\lambda_i|}{1 + |\lambda_i|}$$

$$= (-32 \pm 28^{+9}_{-7}) \times 10^{-3}$$

polarization-dependent results

[PLB 742 (2015) 38-49]

$\phi_{d,i}^{J/i}$	$\psi \rho^0$ [degrees]	$lpha_{CL}^{i}$	$_{P}[\times 10^{-3}]$
$ ho_0$	$44.1 \pm 10.2^{+3.0}_{-6.9}$	$ ho_0$	$-47 \pm 34^{+11}_{-10}$
$\rho_{\parallel}-\rho_{0}$	$-0.8 \pm 6.5^{+1.9}_{-1.3}$	$ ho_{\parallel}$	$-61 \pm 60^{+8}_{-6}$
$\rho_{\perp} - \rho_0$	$-3.6\pm7.2^{+2.0}_{-1.4}$	$ ho_{\perp}$	$17 \pm 109^{+22}_{-15}$

$\Rightarrow \phi_d^{J/\psi\rho^0} - \phi_d^{J/\psi K^0} = (-0.9 \pm 9.7^{+2.8}_{-6.3})^{\circ}$

Consistent with no polarization-dependence

$$S_{f} \equiv \frac{2\mathcal{I}m(\lambda_{f})}{1+|\lambda_{f}|^{2}} \qquad C_{f} \equiv \frac{1-|\lambda_{f}|^{2}}{1+|\lambda_{f}|^{2}}$$

$$\frac{f}{B^{0}} \xrightarrow{\text{Experiment}} S_{f} \qquad C_{f} \qquad \text{Correlation}$$

$$\frac{\overline{B}^{0}}{B^{0}} \rightarrow J/\psi \rho^{0} \quad \text{LHCb} \qquad -0.66^{+0.13+0.09}_{-0.12-0.03} \qquad -0.063 \pm 0.056^{+0.019}_{-0.014} \qquad -0.01 \text{ (stat)}$$

$$\frac{\overline{B}^{0}}{B^{0}} \rightarrow J/\psi \pi^{0} \quad \text{Belle [33]} \qquad -0.65 \pm 0.21 \pm 0.05 \qquad -0.08 \pm 0.16 \pm 0.05 \qquad -0.10 \text{ (stat)}$$

$$\frac{\overline{B}^{0}}{B^{0}} \rightarrow J/\psi \pi^{0} \quad \text{BaBar [34]} \qquad -1.23 \pm 0.21 \pm 0.04 \qquad -0.20 \pm 0.19 \pm 0.03 \qquad 0.20 \text{ (stat)}$$

Our results are well consistent with the Belle results

$\frac{LHCb}{Control penguin from B^0} \rightarrow J/\psi \rho^0$

• Two observables to extract a_i and θ_i :

$$\phi_d = 2\beta$$

$$\tan\left(\phi_{d,i}^{J/\psi\rho^{0}} - \phi_{d}\right) = \frac{-2a_{i}\cos\theta_{i}\sin\gamma + a_{i}^{2}\sin2\gamma}{1 - 2a_{i}\cos\theta_{i}\cos\gamma + a_{i}^{2}\cos2\gamma}$$

Direct CPV $|\lambda_{i}| = \left|\frac{1 - a_{i}e^{i\theta_{i}}e^{-i\gamma}}{1 - a_{i}e^{i\theta_{i}}e^{i\gamma}}\right|$

The penguin shift has a weak dependence on $|\lambda_i|$, resulting in $\Delta \phi_{s,i}^{J/\psi\phi} \approx -\epsilon \times (\phi_{d,i}^{J/\psi\rho^0} - \phi_d)$ $\epsilon = 0.0536$

This factor greatly reduces uncertainty of the penguin shift

$\frac{LHCb}{\GammaHCp}$ Control penguin from $B^0 \rightarrow J/\psi \rho^0$

• Two observables to extract a_i and θ_i :

$$\phi_d = 2\beta$$

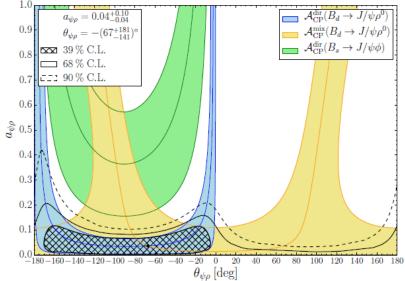
$$\tan\left(\phi_{d,i}^{J/\psi\rho^{0}} - \phi_{d}\right) = \frac{-2a_{i}\cos\theta_{i}\sin\gamma + a_{i}^{2}\sin2\gamma}{1 - 2a_{i}\cos\theta_{i}\cos\gamma + a_{i}^{2}\cos2\gamma}$$

Direct CPV $|\lambda_{i}| = \left|\frac{1 - a_{i}e^{i\theta_{i}}e^{-i\gamma}}{1 - a_{i}e^{i\theta_{i}}e^{i\gamma}}\right|$

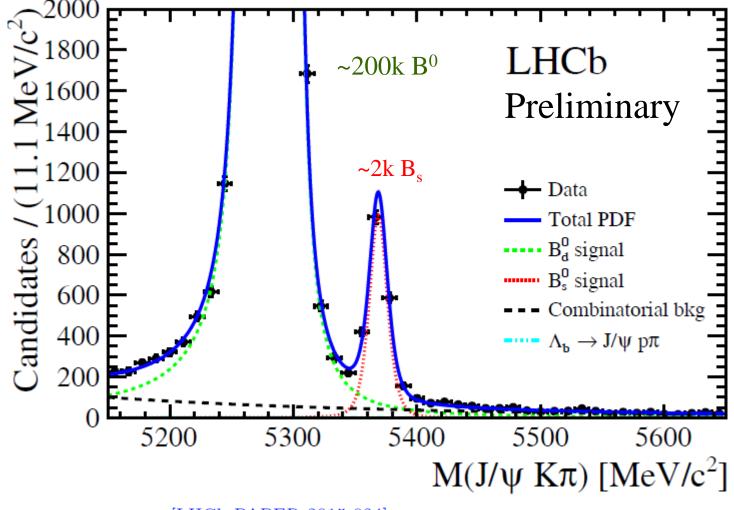
- Use $\phi_d = (43.2^{+1.8}_{-1.7})^\circ$ measured from $B^0 \rightarrow J/\psi K^0$ with penguin correction
- Assuming a and θ are independent of polarization

 $\Delta \phi_s^{J/\psi\phi} = \left(0.001^{+0.010}_{-0.013} \pm 0.003(\text{SU3})\right) \text{rad}$

[Bruyn & Fleischer arXiv:1412.6834]



$B_s^0 \to J/\psi \overline{K}^{*0}$



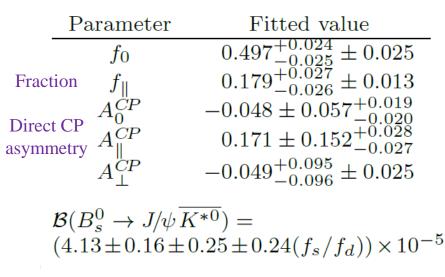
[LHCb-PAPER-2015-034]

Angular analysis

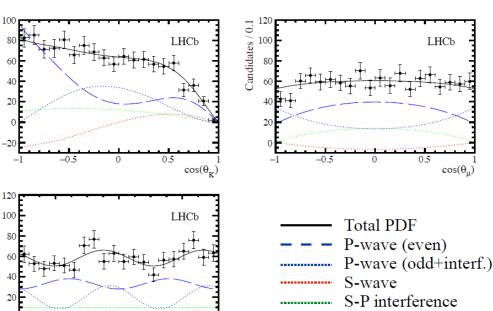
Candidates / 0.

Candidates / 0.31 [rad⁻¹

- Angular analysis used to measure $S \& P(0, \parallel, \perp)$ waves in 4 m_{K π} bins around $K^*(892)^0$, and for B_s^0 and \overline{B}_s^0
- Angular efficiency from simulation (+calibrated by large signal of $B_d^0 \rightarrow J/\psi K^{*0}$)



[LHCb-PAPER-2015-034]



φ (rad)

LHCb preliminary

 $\begin{array}{l} \theta_{K} = \theta_{hh} \\ \phi_{h} = \chi \\ \theta_{u} = \theta_{J/\psi} \end{array}$

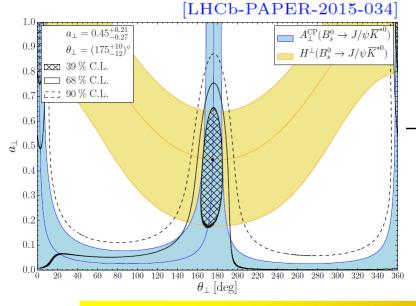
Control penguin from $B_s^0 \to J/\psi \overline{K}^{*0}$

• Use results from angular analysis and branching fractions

$$\cdot A_i^{CP} = \frac{\Gamma\left(\overline{B}_s^0 \to J/\psi(K^+\pi^-)_i\right) - \Gamma\left(B_s^0 \to J/\psi(K^-\pi^+)_i\right)}{\Gamma\left(\overline{B}_s^0 \to J/\psi(K^+\pi^-)_i\right) + \Gamma\left(B_s^0 \to J/\psi(K^-\pi^+)_i\right)} = -\frac{2a_i \sin \theta_i \sin \gamma}{1 - 2a_i \cos \theta_i \cos \gamma + a_i^2}$$

•
$$H_i \propto \frac{1}{\epsilon} \left\| \frac{\mathcal{A}'_i}{\mathcal{A}_i} \right\|^2 \frac{\mathcal{B}(B^0_s \to J/\psi \overline{K^{*0}})}{\mathcal{B}(B^0_s \to J/\psi \phi)} \frac{f_i}{f'_i} = \frac{1 - 2a_i \cos \theta_i \cos \gamma + a_i^2}{1 + 2\epsilon a'_i \cos \theta'_i \cos \gamma + \epsilon^2 a_i'^2}$$

Theory inputs computed with LCSR [Barucha et al, arXiv:1503.05534]

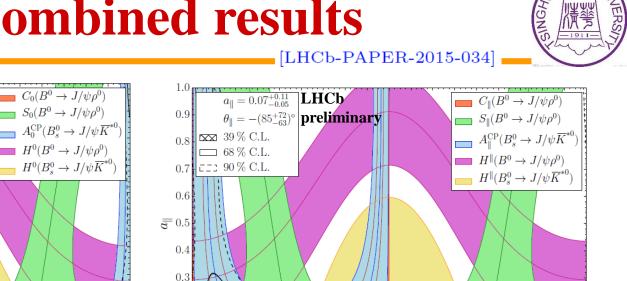


• Extract penguin parameters from χ^2 fit to H_i and A_i^{CP} information for each polarisation $i \in (0, \bot, \|, S)$.

Translate to penguin phase shift:

Param.	Value \pm (stat) \pm (syst) $\pm (\mathcal{A}'_i/\mathcal{A}_i)$
$\Delta \phi^{J/\psi\phi}_{s,0}$	$0.001^{+0.087}_{-0.011} {}^{+0.013}_{-0.008} {}^{+0.048}_{-0.030}$
$\Delta \phi^{J/\psi\phi}_{s,\parallel}$	$0.031^{+0.049}_{-0.038} {}^{+0.013}_{-0.033} {}^{+0.031}_{-0.033}$
$\Delta \phi^{J/\psi \phi}_{s,0} \ \Delta \phi^{J/\psi \phi}_{s,\parallel} \ \Delta \phi^{J/\psi \phi}_{s,\perp}$	$-0.046^{+0.012}_{-0.012} \ {}^{+0.007}_{-0.008} \ {}^{+0.017}_{-0.024}$

Current ϕ_s precision ±0.035 rad



 θ_{\parallel} [deg]

polarization dependent measurements are used for both channels

Now fit for $ \mathcal{A}'_i/\mathcal{A}_i $ to limit	Parameter	Fitted value	
sensitivity to hadronic	$\Delta \phi_{s,0}^{J/\psi \phi}$	$0.000^{+0.009}_{-0.011}(\text{stat})^{+0.004}_{-0.009}(\text{syst})$	
uncertainties.	$\Delta \phi_{s,\parallel}^{J/\psi \phi}$	$0.001^{+0.010}_{-0.014}(\text{stat})^{+0.007}_{-0.008}(\text{syst})$	
• Assume $ \mathcal{A}'_i/\mathcal{A}_i (B^0_s \to J/\psi \overline{K^{*0}}) = \mathcal{A}'_i/\mathcal{A}_i (B^0 \to J/\psi \rho^0)$	$\begin{array}{c} \Delta \phi_{s,0}^{J/\psi \phi} \\ \Delta \phi_{s,\parallel}^{J/\psi \phi} \\ \Delta \phi_{s,\perp}^{J/\psi \phi} \end{array}$	$0.003^{+0.010}_{-0.014}(\text{stat})^{+0.007}_{-0.008}(\text{syst})$	

0.2

0.1

• Combined results dominated by $B^0 \rightarrow J/\psi \rho^0$ (access to mixing induced asymmetry not available in flavor-specific $B_s^0 \rightarrow J/\psi \overline{K}^{*0}$)

Penguins are small!

 $a_0 = 0.01^{+0.10}_{-0.01}$

 $\theta_0 = -(82^{+98}_{-262})$

-140 - 120 - 100 - 80

39 % C.L.

68 % C.L.

:: 90 % C.L.

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

 $^{\circ}{8}$ 0.5

LHCb

preliminar

-20

0

 θ_0 [deg]

60

100120 160

120 140 160

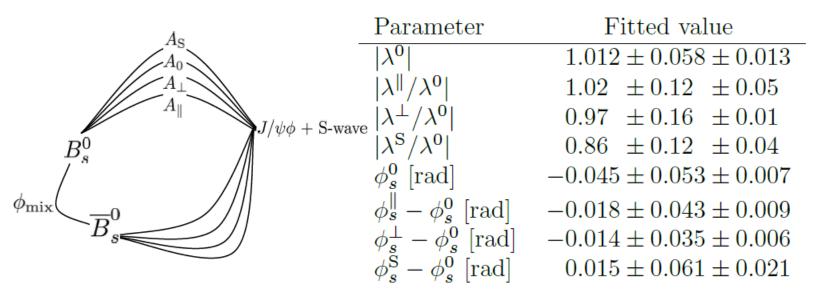
- The world average for ϕ_s is -15 ± 35 mrad
- The SM theoretical uncertainty is not limited by penguin contributions anymore
- We have experimental tools to control it with precision ± 14 mrad
 - $-B^0 \rightarrow J/\psi \rho^0$ accesses to mixing induced asymmetry, thus is more powerful
 - While cross-check is needed between different modes

Backup

PRL 114 (2015) 041801

- Penguin pollution and/or *CP* violation could be different for each polarisation state, $i \in (0, \bot, \|, S)$ [Bhattacharya et al., IJMP A28 (2013) 1350063].
- Relax assumption that $\lambda^i \equiv \eta_i \frac{q}{p} \frac{A_i}{\overline{A}_i}$ is same for all $(J/\psi K^+ K^-)_i$ polarisation states.

• Measure $\lambda^i = |\lambda^i| e^{-i\phi_s^i}$



• Everything compatible with no polarisation dependence.

Time dependent asymmetry

 λ_{i}

THOMSE THOMSE

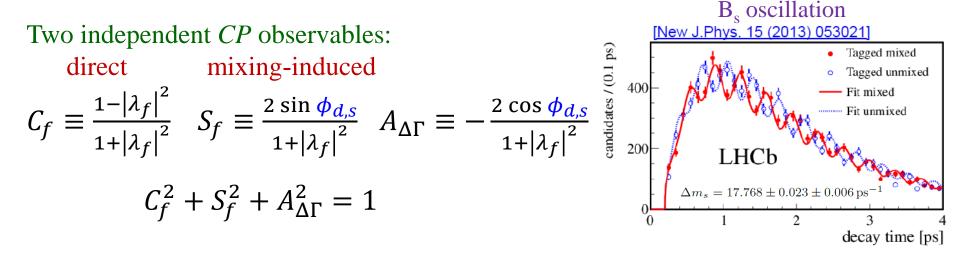
• *CP* violation in interference between mixing and decay: $\phi_{d,s} \equiv -\arg \lambda_f$

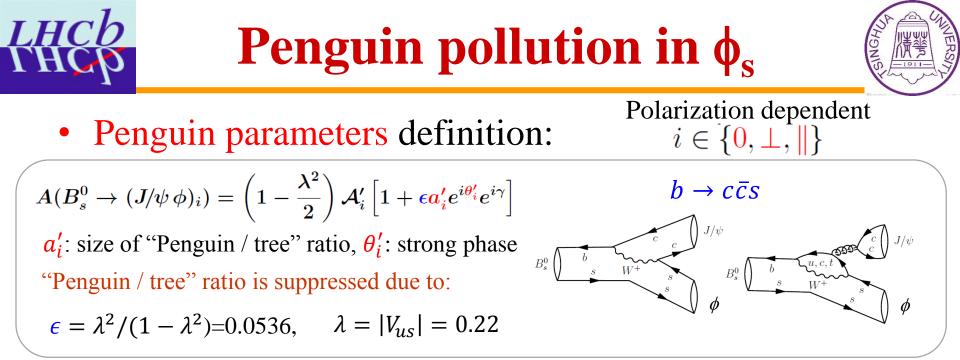
$$\overline{B}_{(s)}^{0} \xrightarrow{A_{f}} f_{CP}$$

$$\overline{B}_{(s)}^{0} \xrightarrow{A_{f}} f_{CP}$$

$$q/p \xrightarrow{B_{(s)}^{0}} A_{f}$$

$$A_{CP}(t) \equiv \frac{\Gamma_{\bar{B}_{(s)}^{0}(t) \to f} - \Gamma_{B_{(s)}^{0}(t) \to f}}{\Gamma_{\bar{B}_{(s)}^{0}(t) \to f} + \Gamma_{B_{(s)}^{0}(t) \to f}} = \frac{S_{f} \sin(\Delta m t) - C_{f} \cos(\Delta m t)}{\cosh(\Delta \Gamma t/2) + A_{\Delta \Gamma} \sinh(\Delta \Gamma t/2)}$$





Penguin parameters

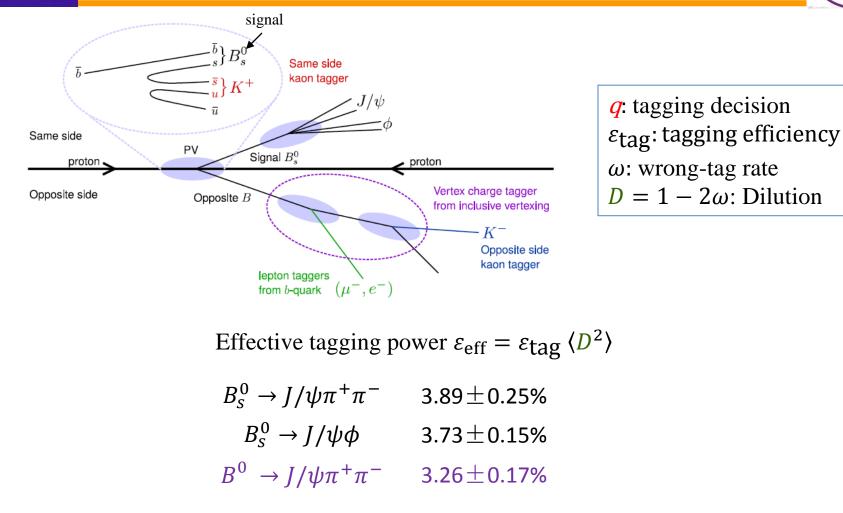
1 tree amplitude $V_{cs}V_{cb}^*T'^{(c)}$ [T' & P' are strong amplitudes] 3 Penguin amplitudes: $V_{ts}V_{tb}^*P'^{(t)}$, $V_{cs}V_{cb}^*P'^{(c)}$, $V_{us}V_{ub}^*P'^{(u)}$

- All modes are P2VV decays
- SU(3) partners with $s(J/\psi\phi) \leftrightarrow d(\text{control mode})$
- Idea:
 - Measure two observables to solve two unknowns a_i and θ_i in the control channel
 - assume perfect SU(3) symmetry, i.e. $a'_i = a_i$ and $\theta'_i = \theta_i$
 - then we can calculate

$$\tan(\Delta \phi_{s,i}^{J/\psi\phi}) = \frac{2\epsilon a_i' \cos \theta_i' \sin \gamma + \epsilon^2 a_i'^2 \sin(2\gamma)}{1 + 2\epsilon a_i' \cos \theta_i' \cos \gamma + \epsilon^2 a_i'^2 \cos(2\gamma)}$$

SU(3) breaking for $a' = a \& \theta' = \theta$ at level of 20-30% [Bruyn & Fleischer arXiv:1412.6834]

Flavour tagging



NERS/