Analysis of $B^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ at Belle

Yao Li

Virginia Tech & Belle Collaboration

Aug 5, 2015

Outline

- Motivation
- Belle detector
- Data skim and MC simulation
- Continuum background suppression
- BB background suppression
- Other backgrounds from rare B decays

I. Motivation

- Probe the properties of the weak interaction through their dependence on the <u>complex quark couplings</u> in CKM matrix (V_{ub})
- Measure <u>direct CP asymmetry</u> via rate difference between B and B decay

Previous Results of Branching Fractions

Year Reported	Collaboration	Number of <i>B</i> B Pairs (x10 ⁶)	Branching Fraction (x10 ⁻⁶)		
2002	Belle	32	$8.0^{+2.3}_{-2.0} \pm 0.7$		
2003	BaBar	89	$10.9 \pm 3.3 \pm 1.6$		
2005	BaBar	232	$16.2 \pm 1.2 \pm 0.9$		
2009	BaBar	465	$15.2 \pm 0.6^{+1.3}_{-1.2}$		

- The previous similar analysis at Belle in 2002 is $B^+ o
 ho^0 \pi^+$.
- Number of $B\overline{B}$ pairs from Belle in this analysis: 772 x 10⁶.

2. Belle Detector

Functions of sub-detectors:

- *B* decay vertices: SVD (Silicon Vertex Detector)
- Charged particle tracking: CDC (Central Drift Chamber)
- π/K identification: CDC, ACC (Aerogel Cherenkov Counter), TOF (Time of Flight Counter)
- Electron identification: ECL (Electromagnetic Calorimeter)
- Muon and K_L identification: KLM (K_L and μ Detector)

3. Event Reconstruction and Data Skim

- I. Event reconstruction: three charged pions $(\pm +-)$ to form a B meson candidate.
- 2. Real data skimmed to save the events related to this analysis only.
 - Skim condition applied on real data: $M_{bc}(5.2 5.3 \text{ GeV/c}^2)$ and $\Delta E(-0.5 0.5 \text{ GeV})$, in Upsilon(4S) center of mass frame.
 - Passing ratio ~ 4%

3. Extra cuts for skimming on generic MC samples (continuum and BB events).

- Track vertex |dr| < 1 cm;
- Track vertex |dz| < 5 cm;
- Particle ID likelihood $\pi/K > 0.1$;

Passing ratio ~ 1.13%

Data Sample from MC Simulation

Type of MC Simulation	Number of Events
Signal	658 streams
Each type of <i>B</i> B background	44-971 streams
Generic <i>B</i>	10 streams
Generic qā	6 streams
Rare B	50 streams

• One stream equals the same amount of events in the real data.

4. Continuum Background Suppression

- I. Continuum $e^+e^- \rightarrow q\bar{q} \ (q=u,d,s,c)$ events are the most dominant background
- 2. Method to suppress the continuum background: exploit the difference in event topology by signal MC and continuum MC data.

Variables to Separate BB and Continuum Events

- Δz : the distance along the z axis between signal and tag B in the CM
- $\cos \theta_B$: cosine of the angle between the B momentum and the z axis in the CM
- Event shape: spherical for signal vs. jet-like for continuum.

Distinguish Signal from Continuum

 $L_{S} = P_{S}(\Delta z) \times Q_{S}(\cos \theta_{B}) \times R_{S}(klr)$ $L_{B} = P_{B}(\Delta z) \times Q_{B}(\cos \theta_{B}) \times R_{B}(klr)$ $LR = \frac{L_{S}}{L_{S} + L_{B}}$

Figure of Merit for Likelihood Ratio

- For smallest statistical error on the asymmetry, we need to maximize $N_s/sqrt(N_s+N_B)$
- For a given LR minimum cut, calculate passed event number for signal (N_s) and continuum (N_B)
- Get the LR cut which corresponds to the peak of figure of merit (FOM).

 Result: the selected LR_{cut} remove 99% of continuum background while keeping 40% of signal.

5. Dalitz Plot

• Three tracks (1,2,3) forms a candidate, then $m_{12}^2 = (p_1^{\mu} + p_2^{\mu})^2$

- Define Dalitz plot variables in the way that we always have $m_{12}^2 \ge m_{23}^2$, then the Dalitz plots are folded along the axis of symmetry.
- Resonances show up as bands on Dalitz plot.

Dalitz Plot Efficiency

- We generated MC samples on phase space to evaluate the efficiency of reconstruction (reconstructed B vs. generated B).
- In most region, the efficiency is over 95%. But it is low in some boundary region as shown in the figure.

6. BB Background Suppression

Major BB backgrounds:

(1)
$$B^{\pm} \rightarrow D^{0} h^{\pm}, D^{0} \rightarrow h^{, \dagger} h^{, \tau}$$

(2) $B^{\pm} \rightarrow J/\psi h^{\pm}, J/\psi \rightarrow I^{\dagger} I^{, \tau}$
(3) $B^{\pm} \rightarrow \psi(2S) h^{\pm}, \psi(2S) \rightarrow I+I-$
(4) $B^{\pm} \rightarrow K^{0}{}_{S} h^{\pm}, K^{0}{}_{S} \rightarrow \pi^{+} \pi^{-}$

- h means π or K;
- A kaon or lepton could be misidentified as a pion.

Dalitz plot for each mode (from MC)

Veto ranges: 99% BB background events in each band

7. Rare B Background

- Rare *B* backgrounds include all the non-signal rare *B* decay modes.
- Study on rare B MC sample prepared in Belle (50 streams).
- We need the non-signal distribution for ΔE , therefore the peak at $\Delta E=0$ should be removed.

 Method to remove signal-like modes in charged rare modes: review all the decay modes in the charged rare B decay table and find the modes which would looks like signal: B→Xh, with X→h'h''.

Model the M_{bc} , ΔE , and Dalitz plot of rare B

- Find analytical function to describe the PDFs of M_{bc} and ΔE
- For Dalitz plot, use 2-D RooHistPdf (PDF sampled from histogram)

Summary

Study $B^{\pm} \rightarrow \pi^{\pm} \pi^{\mp} \pi^{-}$ using Belle data (772×10⁶ BB paris):

- Skim real data and generic MC.
- Suppress continuum and $B\overline{B}$ background.
- Study the background from rare B decays.
- Next: study on systematic error study; unblind the real data and extract physical results.

Thanks !

Backup Slides

I. Overview

- KEKB circumference: 3 km
- e : 3.5 GeV, e : 8.0 GeV
- Collide angle: 22 mrad (1.26°)(reason: reduce bkg synchrotron radiation)
- z+ direction: magnetic field; opposite direction of e beam.
- B decay vertices: SVD
- Charged particle tracking: CDC
- PID: dE/dx in CDC, ACC, TOF
- EM showers: ECL
- Muons and KL identification: KLM
- Whole θ region: 17 to 150.

2. Beam Pipe

- SVD should be close to the IP, but 2 constrains:
 - beam-included heating of the beam pipe;
 - large beam bkg due to multiple Coulomb scattering in the beam pipe wall
- extending from z = -4.6 to 10.1 cm
- inner r = 20 mm (SVDI); I5 mm (SVD2)

3. Silicon Vertex Detector (SVD)

- Separate 2 B meson decay vertices
- Average Δz of 2 B mesons: 200 μ m
- SVD precision: within 100 μ m
- SVD detects particles passing through a Double Sided Silicon Detector (DSSD), by observing the charge collected by sense-strips on both sides of the DSSD.
- DSSD is a semiconductor with a pn junction.
- SVDI: 1998-2003; SVD2(2003-end)

	SVD1	SVD2
Beam-pipe radius (mm)	20	15
Number of layers	3	4
Number of DSSD ladders in layers 1/2/3/4	8/10/14/N.A.	6/12/18/18
Number of DSSDs in ladder in layers 1/2/3/4	2/3/4/N.A.	2/3/5/6
Radii of layers 1/2/3/4 (mm)	30.0/45.5/60.5/N.A.	
Angular coverage	$23^\circ \le \theta \le 140^\circ$	$23^\circ \le \theta \le 140^\circ$
Angular acceptance	0.86	0.86
Total number of channels	81920	110592
Strip pitch(μ m) for z	84	75(73 for layer 4)

Table 3.1: Characteristics of the SVD1 and the SVD2

3. Silicon Vertex Detector (SVD)

4. Central Drift Chamber (CDC)

- Reconstruct trajectories of charge particles(then $p_{perp} = qBr$)
- measure dE/dx for PID
- Info on the hits in CDC is used in triggering
- Length: 2.4m; Radius: 83 to 874 mm
- polar angel: 17 to 150
- Spatial resolution: 10 μ m in r- ϕ , 2 mm in z
- distinguish π/K of momentum < 0.8 GeV/c

Figure 3.7: The Central Drift Chamber (CDC): side-view (left) and end-view (right).

5. Aerogel Cherenkov Counter

- $\bullet\,$ For K/ π separation with momentum between 1.2 and 3.4 GeV/c
- In this momentum range, π emits Cherenkov light, but K not
- Angle range: 17° to 127°

6. Time of Flight Counter (TOF)

- Distinguish π/K with momentum (0.8, 1.2) GeV/c
- Measure the time elapsed between the collision at the IP and its passage through the TOF barrel
- Provide fast timing signals for the trigger system, which requires a timing resolution 100ps
- Since we know T, L, p, we can calculate m by:

$$T = \frac{L}{c} \sqrt{1 + \left(\frac{mc}{p}\right)^2}$$

7. Electromagnetic Calorimeter

- Measures the energy and position of photons with high efficiency and good resolution.
- Electron identification

8. Extreme Forward Calorimeter (EFC)

- Extend the polar angle coverage of ECL
- Around the beam pipe close the the IP
- Mask the beam background of the CDC detector

9. Solenoid Magnet

General	Central field	1.5 T		
	Length	4.41 m		
	Weight	23 t		
	Cool-down time	$\leq 6 \text{days}$		
	Quench-recovery time	$\leq 1 \text{ day}$		
Cryostat	Inner/Outer Radius	$1.70/2.00\mathrm{m}$		
Coil	Effective radius	1.8 m		
	Length	3.92 m		
	Superconductor	NbTi/Cu		
	Nominal current	4400 A		
	Inductance	3.6 H		
	Stored energy	35 MJ		
	Typical charging time	0.5 h		

Table 3.2: Main parameters of the solenoid magnet.

10. K_L and μ Detector (KLM)

$\bullet\,$ Identify K_L and μ for momenta greater than 0.6 GeV/c

Figure of Merit for Likelihood Ratio

- For smallest statistical error on the asymmetry, we need to maximize $N_s/sqrt(N_s+N_B)$
- For a given LR minimum cut, calculate passed event number for signal (N_s) and continuum (N_B)
- Get the LR cut which corresponds to the peak of figure of merit (FOM).

Selected likelihood ratio cut (LR_{cut}) to suppress continuum background

Summary of Continuum Suppresion

	LR _{cut}	Efficiency for signal	Efficiency for background
SVD1 with Δz	0.9524	39.1%	0.781%
SVD1 w/o Δz	0.9103	43.0%	1.66%
SVD2 with Δz	0.9610	38.0%	0.660%
SVD2 w/o Δz	0.9189	40.4%	1.42%

Decay Modes

B+ to X0 h+	Spin	XO	X0 life length	m width(MeV)	h+-	*10^3	X0 to	*10^3	ratio *10^6	misID	final ratio
1.865	0	D0bar	1.229E-02		pi	4.81	КК	3.96	19.0476	2	0.190476
1.865		D0bar	1.229E-02		рі	4.81	pipi	1.401	6.73881		6.73881
1.865		D0bar	1.229E-02		pi	4.81	K+pi-	38.8	186.628	1	18.6628
1.865		D0bar	1.23E-02		рі	4.81	pi+K-	0.147	0.70707	1	0.070707
1.865		D0bar	1.229E-02		K	0.365	КК	3.96	1.4454	3	0.0014454
1.865		D0bar	1.229E-02		K	0.365	pipi	1.401	0.511365	1	0.0511365
1.865		D0bar	1.229E-02		K	0.365	K+pi-	38.8	14.162	2	0.14162
1.865		D0bar	1.229E-02		K	0.365	pi+K-	0.147	0.053655	2	0.00053655
									229.2939		
3.097	1	J/psi		9.29E-02	pi	0.049	ee	59.4	2.9106	2	0.029106
3.097		J/psi		9.29E-02	pi	0.049	mumu	59.3	2.9057	2	0.029057
3.097		J/psi		9.29E-02	pi	0.049	pipi	0.147	0.007203		0.007203
3.097		J/psi		9.29E-02	K	1.016	ee	59.4	60.3504	3	0.0603504
3.097		J/psi		9.29E-02	K	1.016	mumu	59.3	60.2488	3	0.0602488
3.097		J/psi		9.29E-02	K	1.016	pipi	0.147	0.149352	1	0.0149352
									126.572055		
3.686	1	psi(2S)		3.04E-01	pi	0.0244	ee	7.73	0.188612	2	0.00188612
3.686		psi(2S)		3.04E-01	pi	0.0244	mumu	7.7	0.18788	2	0.0018788
3.686		psi(2S)		3.04E-01	pi	0.0244	pipi	0.08	0.001952		
3.686		psi(2S)		3.04E-01	K	0.639	ee	7.73	4.93947	3	0.00493947
3.686		psi(2S)		3.04E-01	K	0.639	mumu	7.7	4.9203	3	0.0049203
3.686		psi(2S)		3.04E-01	K	0.639	pipi	0.08	0.05112	1	0.005112
									10.289334		
3.415	2	chi_c0(1P)		10.4	K	0.134	pipi	8.5	1.139	1	0.1139
3.415		chi_c0(1P)		10.4	K	0.134	KK	6.06	0.81204	3	0.00081204
0.498	0	KOS	2.68		pi	0.0231	pipi	692	15.9852		15.9852
0.498		KOS	2.68		K	0.00136	pipi	692	0.94112	1	0.094112
									16.92632		16.92632
0.783	1	omega		84.9	K	0.0067	pipi	15.3	0.10251	1	0.010251
0.896	1	K*(892)		46.2	pi	0.0101	Kpi	999	10.0899	1	1.00899
		KKK				0.0337		1000	33.7	3	0.0337
signal		pipipi							15.2		15.2
0.775	1	rho0		149	pi	0.0083	pipi	1000	8.3		8.3
1.275	2	t2(1270)		185	pi	0.0016	pipi	848	1.3568		1.3568
1.465	1	rho(1450)		400	pi	0.0014	pipi	seen			0
		pipipi nonres				0.0053		1000	5.3		5.3
0.783	1	omega		84.9	pi	0.0069	pipi	15.3	0.10557		0.10557