SPT-3G:

The Next Generation Receiver for Polarized Cosmic Microwave Background Measurements with the South Pole Telescope

Amy N. Bender on behalf of the SPT-3G Collaboration DPF 2015 2015-08-05

The South Pole Telescope Collaboration

Funded By:

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope
100, 150, 220 GHz and
1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ

960 detectors 95,150,220 GHz

2012: SPTpol 1600 detectors 95,150 GHz +Polarization

2016: SPT-3G ~16,000 detectors 95,150,220 GHz **+Polarization**

The Cosmic Microwave Background

NASA/WM

WWAP W-band 30 deg²

Planck 143 GHz 30 deg²

SPTpol 150 GHz 30 deg²

SPTpol 150 GHz 30 deg²

CMB Anisotropy Galaxy Clusters Dusty Galaxies & AGN

Polarization of the CMB

credit: ESA and the Planck Collaboration

Baumann 2009

The Power of CMB Polarization

SPTpol B-mode Measurements

4.3σ detection of lensing B-modes in the autospectrum from ~1st year of observations

Currently analyzing 2.5 years of additional data over a larger sky area (extending to lower-ell) Keisler et al. 2015

Focal Plane Evolution

Snowmass; arXiv:1309.5383

The SPT-3G Receiver

1.9 deg field of view (2.8 deg²)

- 16,262 Transition-edge sensor bolometers operated at 250 mK
- 3 Observing bands: 95, 150, 220 GHz
- ~20x faster mapping speed than current instrument (SPTpol)

Detector Architecture

Posada et al. 2015, Superconductor Science and Technology

- Multichroic dual-polarization pixel (adapted from design from UC Berkeley)
 - Broad-band sinuous antenna microstrip in-line filters
 - 6 separate TES islands per pixel (3 bands & 2 polarizations)
 - 271 pixels fabricated monolithically on a 6" wafer

Multiplexing Readout Architecture

Readout 64 bolometers on single pair of wires using LC resonators to select an AC voltage bias

Recent Performance

- Performance Criteria:
 - Sensitivity (NET)
 - Stability
 - Crosstalk
 - Uniformity across the focal plane

SPT-3G Cluster Survey Forecasts

- 2500 square degree survey of the CMB for a duration of 4 years
 - 2.5 μK (3.5 μK) in T (P) @150 GHz
 - 4.3 μK (6 μK) in T(P) @ 95/ 220 GHz
- ~10,000 new galaxy clusters
 - Astrophysics of galaxy clusters
 - Constrain growth of large-scale structure & evolution of dark energy (w, w_a)
 - CMB cluster lensing to calibrate the mass of clusters

Benson et al. 2014, Proc. SPIE 9153

SPT-3G Projected Power Spectrum

- High S/N measurement of gravitational lensing Bmodes
 - constrain sum of neutrino mass through growth of structure
 - de-lensing of inflationary spectrum

2019 Projections

Priors from Planck + BOSS

Benson et al. 2014, Proc. SPIE 9153

σ(r)	0.011
σ(Σm	0.061 eV

Summary

- CMB polarization is a powerful cosmological probe
- SPT-3G will map 2500 square degrees of the millimeter-wavelength sky in both temperature and polarization to exciting new depths
 - Both detector and readout technology have made significant advances with a focal plane of ~16,000 detectors
 - Constrain the evolution of dark energy, neutrino mass, and inflationary gravity waves

credit: D. Hrubes