Associated Production of Squarks and Gauginos at 100 TeV

Bob Zheng

Based on 1506.02644 with Sebastian Ellis

Michigan Center for Theoretical Physics

DPF, August 4th 2015
I. Motivation
Where is SUSY?

Several ways to interpret null LHC results:

- **Optimist**: SUSY will be found at LHC-13/14, just wait for enough data!

- **Pessimist**: Natural SUSY is disfavored → nature probably not SUSY

- **Somewhere in the middle** (this talk): SUSY manifest in nature, but out of LHC reach?

If LHC can't reach SUSY, maybe future colliders can?
Squark-Gaugino Associated Production at $\sqrt{s} = 100$ TeV

Focus of this talk: future p-p collider, $\sqrt{s} = 100$ TeV

Previous studies focused on SUSY pair production channels, e.g. $pp \rightarrow \tilde{q}\tilde{q}$, $pp \rightarrow \tilde{g}\tilde{g}$, $pp \rightarrow \tilde{\chi}^\pm/0\tilde{\chi}^\pm/0$

Our work focuses instead on squark-gaugino associated production

Squark-gluino:

$\sigma \sim \mathcal{O}(\alpha_s^2)$

Squark-wino/bino:

$\sigma \sim \mathcal{O}(\alpha_s \alpha_W)$
Why Associated Production?

Spectra w/ mass hierarchies

- Certain SUSY theories predict “mini-split” spectra, where

\[M_{\tilde{G}} \lesssim 10 \times m_{\tilde{s}} \Rightarrow \sigma(pp \rightarrow \tilde{g}\tilde{q}) \gg \sigma(pp \rightarrow \tilde{q}\tilde{q}) \]
Why Associated Production?

Spectra w/ mass hierarchies

- Certain SUSY theories predict “mini-split” spectra, where

\[M_{\text{Gaugino}} \lesssim 10 \times m_{\text{sfermion}} \Rightarrow \sigma(pp \rightarrow \tilde{g}\tilde{q}) \gg \sigma(pp \rightarrow \tilde{q}\tilde{q}) \]

Electroweak vs Strong Production Cross Sections

- Pair production: \(pp \rightarrow \tilde{W}^+\tilde{W}^-, \sigma \sim O(\alpha_W^2) \)
- Associated production: \(pp \rightarrow \tilde{W}\tilde{q}, \sigma \sim O(\alpha_W\alpha_s) \)
Why Associated Production?

Spectra w/ mass hierarchies
- Certain SUSY theories predict “mini-split” spectra, where
 \[M_{\text{Gaugino}} \lesssim 10 \times m_{\text{sfermion}} \Rightarrow \sigma(pp \rightarrow \tilde{g}\tilde{q}) \gg \sigma(pp \rightarrow \tilde{q}\tilde{q}) \]

Electroweak vs Strong Production Cross Sections
- Pair production: \(pp \rightarrow \tilde{W}^+\tilde{W}^-, \sigma \sim \mathcal{O}(\alpha_W^2) \)
- Associated production: \(pp \rightarrow \tilde{W}\tilde{q}, \sigma \sim \mathcal{O}(\alpha_W\alpha_s) \)

Gluino-Neutralino Co-Annihilation Region
- If \(M_{\tilde{g}} - M_{\chi^0} \ll M_{\chi^0}, \chi^0 \) can be DM provided \(M_{\chi} \lesssim 8 \text{ TeV} \) (see e.g. Ellis, Luo, Olive arXiv:1503.07142)
- Collider signal:
 \(\tilde{g}\tilde{g} \rightarrow \text{ISR/FSR jet} + \not{E}_T \text{ vs. } \tilde{q}\tilde{g} \rightarrow \text{hard jet} + \not{E}_T \).
II. Anatomy of Squark-Gaugino Production
I will focus on spectra with heavy squarks and light gauginos

Cartoon of associated production event:

High p_T final state particles arise as boosted squark decay products, with $p_T \sim m_{\tilde{q}}/2$
Kinematic Variables for Background Discrimination

Distributions below for events with $\slashed{E}_T > 2$ TeV

Squark-gluino: Leading jet p_T

$M_{\tilde{g}} = 4$ TeV, $M_{\tilde{q}} = 26$ TeV

Squark-wino/bino: $\slashed{E}_T / \sqrt{H_T}$

$M_{\tilde{\nu}} = 2$ TeV, $M_{\tilde{q}} = 9$ TeV

Both spectra give $\mathcal{O}(0.1)$ fb associated production xsecs
Estimate reach by taking points in the \((M_{\tilde{q}}, M_{\text{Gaugino}})\) plane and:

1. Impose a set of spectrum-independent “basline” cuts

2. Squark-Gluino: Scan over \(\not\!E_T\) and leading jet \(p_T\) cuts
 Squark-Wino/Bino: Scan over \(\not\!E_T\) and \(\not\!E_T/\sqrt{H_T}\) cuts
Estimate reach by taking points in the \((M_{\tilde{q}}, M_{\tilde{G}})\) plane and:

1. Impose a set of spectrum-independent “basline” cuts

2. Squark-Gluino: Scan over \(\not{E}_T\) and leading jet \(p_T\) cuts
 Squark-Wino/Bino: Scan over \(\not{E}_T\) and \(\not{E}_T/\sqrt{H_T}\) cuts

Results presented in context of simplified models:

- **Squark-Gluino**: Gluino, Bino, 1st+2nd gen squarks
- **Squark-Wino/Bino**: Wino, Bino, 1st+2nd gen squarks

See backup slide for simulation details and description of baseline cuts
III. Projected Reaches at $\sqrt{s} = 100$ TeV
Projected reach at $\sqrt{s} = 100$ TeV, 3 ab$^{-1}$

Red: 95% CL **Blue:** 5 σ

$M_{\chi_1^0} = 100$ GeV

Gluino-neutralino co-annihilation region: $M_{\tilde{g}} \lesssim 8$ TeV.

Excluded for $M_{\tilde{q}} \lesssim 28$ TeV! (RH Plot)
Projected reach at $\sqrt{s} = 100$ TeV, 3 ab$^{-1}$

Red: 95% CL
Blue: 5 σ

Squark-Bino Production

Compare to 1.2 TeV reach in Wino pair production via VBF

Berlin, Lin, Low, Wang 1502.05044
Projected Reach: Squark-Wino NLSP Production

Search strategy is robust even for NLSP Wino!

Dashed: 95% CL. **Solid**: 5 \(\sigma \)

- **Blue**: Wino LSP
- **Green**: \(M_{\text{Wino}} - M_{\text{LSP}} = 200 \text{ GeV} \)
- **Red**: \(M_{\text{LSP}} = 100 \text{ GeV} \)

Compare: Wino NLSP pair prod.

- 5\(\sigma \) reach: 1-3 TeV Wino.

Depends on Wino BR to \(h/W/Z \)

Gori, Jung, Wang, Wells 1410.6287
Squark-gluino:

- At $\sqrt{s} = 100$ TeV w/ 3 ab$^{-1}$, can discover 32 (25) TeV squarks for 2 (10) TeV gluino masses

- Can exclude gluino-neutralino co-ann. for < 28 TeV squarks
Summary

Squark-gluino:

- At $\sqrt{s} = 100$ TeV w/ 3 ab$^{-1}$, can discover 32 (25) TeV squarks for 2 (10) TeV gluino masses

- Can exclude gluino-neutralino co-ann. for < 28 TeV squarks

Squark-Wino/Bino:

- Can discover Wino (Bino) masses up to 3 (1.5) TeV for $\lesssim 8$ (6) TeV squark masses

- Stronger reach in Wino mass compared to Wino pair production if $m_{\tilde{q}} \lesssim 10$ TeV
Summary

Squark-gluino:

- At $\sqrt{s} = 100$ TeV w/ 3 ab^{-1}, can discover 32 (25) TeV squarks for 2 (10) TeV gluino masses

- Can exclude gluino-neutralino co-ann. for < 28 TeV squarks

Squark-Wino/Bino:

- Can discover Wino (Bino) masses up to 3 (1.5) TeV for $\lesssim 8$ (6) TeV squark masses

- Stronger reach in Wino mass compared to Wino pair production if $m_{\tilde{q}} \lesssim 10$ TeV

Ass. prod. at $\sqrt{s} = 100$ TeV can probe $\mathcal{O}(10)$ TeV squark masses. Comparable to bounds from low-energy flavor observables!
Simulation Details:

- Used backgrounds generated by the Snowmass collab. for a 100 TeV collider, neglecting pile-up effects

- Signal events generated with Madgraph 5, hadronization/showering via Pythia 6, detector effects simulated with Delphes-3

- Used Snowmass detector framework for 100 TeV p-p Collider

Baseline Cuts:

- Squark-gluino: $H_T > 10$ TeV, $\not\! E_T / \sqrt{H_T} > 20$ GeV$^{1/2}$, 8 jets with $p_T > 50(150)$

- Squark-Wino/Bino: $p_T(j_1) > 2$ TeV, $\not\! E_T > 3$ TeV, $\Delta \phi(j_{1,2}, \not\! E_T) > 0.5$