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Neutrinos in Nuclear Media

* One common theme of contemporary Y a
neutrino experiments: they rely on large A
materials to supply adeguate event rates
(Fe, Ar, C, H O etc.)
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e Problem: nuclear effects caused by nucleons
bound in a nucleus distort the energy
reconstruction of the neutrinos.
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Introduction to Neutrino Scattering

Quasi-Elastic Resonant DIS
Vi ! Vi . Vi 3

wt Al W

d u
N P P AT — to
¢’ — __________:E_,K,:n:
- pﬂ:—l_ .
Increasing x Decreasing X
Decreasing E Increasing E_

*Charged current neutrino + nucleon events are broadly categorized into
guasi-elastic (single nucleon final state), resonant (multiple pion, single
nucleon final state) and deeply inelastic (multiple hadron final state)

Lower Bjorken-x implies more inelastic events.

- Total neutrino cross section dominated by quasi-elasticup to E ~ 2.0 GeV
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Enter MINERVA

Planes of scintillator strips, surrounded

by steel outer frames make up hexagonal modules.
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Nuclear targets in the same neutrino  MINOS near
beam allow MINERVA to make
A-dependent physics
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Event Selection and Reconstruction

Primary Muon track is matched to
MINOS. MINOS acceptance is poor for

-
8 ..|high angle muons, so we only accept
= events with® < 17° ~_
S 110 M
Z 100 . - \
Q This track is used as an “anchor” to \
(% reconstruct an event vertex T
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If available, additional tracks Module Number
are used to improve the
vertex fit iteratively.
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From Inclusive to DIS

*\We isolate a deeply inelastic sample by making cuts on the four
momentum transfer (Q?) and final state invariant mass (W)

*Require Q°> 1.0 (GeV / c)* and W > 2.0 GeV / ¢*. These cuts remove the
guasielastic and resonant events from the inclusive sample, and allow us to
Interpret our data on the quark level.

«Cuts are illustrated for CH events between 5 and 50 GeV EU and Gu <17°.

Signal - Tracker Modules 45-50
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Backgrounds (Kinematic):

DIS Candidates: Tracker Modules 45-50

After making kinematic cuts on Q*

> , T
5 300f t +TD;ﬁED|s .
S E%Eaz?bowzz.o and W, we are left with a
2 o background of events with true Q° <
5 150F - 1.0 (GeV/c)* and W < 2.0 (GeV/c?)
= POT-Normalized .
10 that smear into the sample.
10 5 30 % 40 45 50 *Estimate this background in the
Reconstructed Neutrino Energy (GeV) . . .
nuclear targets and scintillator using
MC (left plots).

*MC Is tuned to data using events
adjacent to W = 2.0 (GeV/c?) and Q°
= 1.0 (GeV/c)?
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Fitting Sidebands

DIS Candidates: Tracker Modules 33-38

Scale Factors Applied to Simulation (stat. Error only) § ool Y + E?S‘Sms
N = Simwez
A W<2.0 Q2<1.0W>2.0 %200; -
C 0.87£0.07 1.42+0.10 il |
CH 0.90+0.01 1.45+0.01 s - o EGS
- ==
Fe 0.93+0.04 1.36+0.05 T GO N
0,
Pb 0.85+0.04 1.19+0.04 " Reconstructed Neutrino Energy (GeV)
e The MC of both sidebands are fit Before Fitting
. . DIS Candidates: Tracker Modules 33-38
simultaneously over the region 5 < E <50 3 ——
o 2 -TRUEDIZSd.ow 220
GeV using a X* minimization. 2oy B
2t L [uned Non-DIS Background
 The data and MC of each target is summed uzJ - ks
by material prior to fitting, so we end up . 2 ey

Wlth a Scale faCtOr for C, CH, Fe and Pb.
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Background Events (Wrong Nuclei)
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True vertex (blue
star) is in the same
material as the

(orange star).

Event Origin DIS

reconstructed vertex
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reconstructed  truly occur in the

in the Fe scintillator surrounding
(green).
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true vertex of are reconstructed to the
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(vellow). background.
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* We subtract this background by
measuring the event rates in the
downstream tracker, and
extrapolating these events
upstream to the nuclear target
region.

e Downstream events are
weighted for MINOS acceptance
based on Eu, 6u .
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Wrong Nuclei BG (Data / MC)

Plastic BG Prediction for Iron of Target 2 .WrOng nUC|e| baCkgroundS are
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N Events / 1.0 GeV

Putting it Together

DIS Sample - All Carbon
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Data events
reconstructed in C,
with non-DIS events
subtracted.

Simulated DIS events,
reconstructed in C

CH events in
scintillator
surrounding
target, with
non-DIS
events
subtracted.




Putting it Together

DIS Signal - All Carbon

MINERVA Preliminary

% E POT-Normalized —4- Data
g 50[ 31220 FOT — Simulation
. 40f I
Take our sample of 2
reconstructed DIS events in :>j 30/
carbon with CH events... z 0
DIS Sample - All Carbon 10 i
90: MINERVA Pre lirfu'na 3’ + D E | | |
80 amesoror ms;:,z,aﬁon %570 15 20 25 30 35 40 45 50
>  70F + Data Background.. Reconstructed Neutrino Energy (GeV)
o - Sim. Background
=) 60
T 500 ! T
:>: 30
= 2004 | ...And subtract those events to obtain a
10*%%%% : sample of DIS on carbon in data and MC.
) e e ar | Large un_certainties on neutrino flux,
Reconstructed Neutrino Energy (GeV) measure ratios of C, Fe and Pb /CH where

flux will cancel.
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Migration and Unfolding

eDetector resolution smears the
reconstructed values of x and EU from

their generated quantities (right plot).
«Correct for this smearing using

unfolding.

eUnfolded distributions are then
efficiency corrected to account for
detector effects prior to taking ratios.

Migration
Matrices used
DIS Signal - All Carbon as input
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Migration - Carbon of Target 3

Warning! Unfolding introduces

N Events / 0.1
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Reconstructed Bjorken x

correlations between bins
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DIS Ratios: o(E)

Ratio of o©: %™ Ratio of oF¢: 0% Ratio of o™ : o®™
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*\We measure ratios of cross sections to reduce systematic errors
from the neutrino flux calculation.

*Ratios of the heavy nuclei (Fe, Pb) to lighter CH are evidence of
nuclear effects.

*There Is a general trend of the data being below the MC at
high energy.

*This trend Is larger in the lead than in the iron.
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DIS Ratios: do /dx
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X dependent ratios directly translate to x dependent nuclear effects.
*Currently, our simulation assumes the same x-dependent nuclear
effects for C, Fe and Pb tuned to e scattering.

*The shape of the data at low X, especially with lead is consistent
with additional nuclear shadowing.

*The intermediate x range of (0.3 < x <0.75) shows good agreement
between data and simulation.
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Future Directions

Neutrino Flux

*Future studies of nuclear T
effects will benefit greatly
from MINERVA's increased
energy and intensity run,
taking data as we speak.

| LA L L L L L L |
—— Medium Energy

0.14

—— Low Energy

0.12

DIS Region ‘

MINERVA PreliminaryJ

0.10

0.08

Neutrinos/cm¥GeV/POT

0.06

*Expect much better 004
sensitivity at high and low x 002
with increased beam e
energy. Energy (GeV)

Currently have a quasi-elastic analysis in nuclear targets
In progress for Low Energy beam

*A bright future Is expected!
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Conclusions

*MINERVA has made a measurement of neutrino DIS events
on multiple nuclei in an identical neutrino beam.

*These measurements may be interpreted directly as DIS
X-dependent nuclear effects.

*\We currently observe a deficit in our lead data suggestive of
additional nuclear effects.

*Our data in the intermediate x region shows no deviation from
theory.

 Future higher energy measurements will be higher statistics
as well as the ability to resolve larger x values (x > 0.75).
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Thank you for Listening!
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|Isoscalarity

Heavier nuclei (Fe, Pb) are composed of an unequal
number of protons and neutrons (e.g. Pb: 82 protons, 125
neutrons).

« The v, + N cross section is different for protons and

neutrons; v, want to couple to d quarks, and the neutron

contains more d than u quarks.

*This effect is x dependent (higher x — more valence quarks
— more d quarks.

«Currently, the MINERVA data does not correct for this
difference; this requires some theory input.

a(vng)
1+ (Ns/ZB) g(up}{) Isoscalar correction of two nuclei A
and B with Z protons and N

neutrons.

fisoz(AXB) K(ZBX’ZA) a(vny)

1+ (NA/ZA}S(U—W
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The NuMIl Beamline

Absorber Muon Monitors

Target

120 GeV
protons

From
Main Injector

675 m

Hadron Monitor 12m 18m 240m

 NuMI Beam MC -
150 I | <Low energy beam (blue plot) has a peak

o | —LE | energy of approximately 3 GeV.
£ _ME 1 °*Medium energy is 7 GeV, higher beam
§1oo s energy means more DIS events, and access
E 1 to higher x.
E [ 1 eFlux measurement is constrained with
B | external hadron production data (NA49).

O "% """40 15 20

Neutrino Energy (GeV)
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Efficiency Correction

*\We correct for detector acceptance, using an efficiency correction
derived from the MC. However, we only correct up to E =50 GeV and 6“
<17°.

*Efficiency is corrected target by target, since it is a function of the

distance from the target to MINOS.
sLargest source of inefficiency is MINOS matching requirement. This

acceptance improves as we move downstream in the detector.

Total Efficiency: Iron of Target 2 Total Efficiency: Lead of Target 5

0.3 0.3r
5 " Stat. Errors Only ? - Stat. Errors Only
S 025:MINERVA Preliminary O (5[ MINERVA Preliminary
& T e | . —
= =
TR W g2 =
0.15F - 0.15: :
ot * Downstream toward 0]
0.05F MINOS 0.05F
0 570 15 20 25 30 35 40 45 50

5 10 15 20 25 30 35 40 45 50

True Neutrino Energy (GeV) True Neutrino Energy (GeV)
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Event Table

ij (unfolded) C Fe Pb
0-0.1 90 220 230
0.1-0.2 270 840 930
0.2-0.3 250 800 940
0.3-04 140 390 520
0.4-0.75 100 250 350
0.75+ 1 1 1
TOTAL 850 2500 2970

*Most of our events are in the anti-shadowing and shadowing region; a
marginal number in the EMC region.
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Ratio Uncertainties

Errors on Ratio of o€ : ¢¢H Errors on Ratio of o™ : ¢ Errors on Ratio of ¢ : ¢CH
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9 - o 0.08 9 i

=3 B e - s -

[T} B Q B Q .

8 o10f g 006} g 0

w - L 0.04f L 0.04f
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Neutrino Energy (GeV) Neutrino Energy (GeV) Neutrino Energy (GeV)

*Most of the uncertainty stems from data statistics.
*Higher intensity, higher energy beam will improve this
substantially.

Correlations in data introduced from unfolding are NOT
accounted for in Data stat. uncertainty.
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Fractional Uncertainty

0.25

0.20F

0.10}

0.15]

0.05F

0.087

Ratio Uncertainties

Errors on Ratio of do” do™ Errors on Ratio of dLFe: do™ Errors on Ratio of do™ : do™
dx = dx _ dx °~ dx _ dx "~ dx
| [— Total Error -~ Data Stat. 2 016 (—TotalError Data Stat, 2 018——TotalError Data Stat,
—| —— Detector Res. —— FSI Models c - | — Detector Res. —— FSI Models c I | — Detector Res. —— FSI Models
[ |— Flux+Mass = — Interaction Models '@ 0.14—| —— Flux+Mass  —— Interaction Models '® 0.16/— —— Flux+Mass  —— Interaction Models
[ [—— Scint. BG v [ [—— Scint. BG v F [—— Scint. BG
MINERVA Prel 8 0.12f MINERVA Preliminary, 8 0-14: MINERVA Preliminary|
5 : S5 o012/
0.10% -
E 0 08: E 0.10F
g 2 0.08f
g 0061 8 0.06f
................... I |.‘|: 0.04} |.‘|: B
I - 0.04}
E—|
J 0.02F 0.02
[ ST R ST AT NI R EE B 0.087\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 0.08””\””’#'
0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 0.7 0 01 02 03 04 05 06 0.7
Bjorken x Bjorken x Bjorken x

*Ratios are dominated by data statistics for the most part.
Scintillator background is a larger uncertainty in X.
Correlations in data introduced from unfolding are NOT
accounted for in Data stat. uncertainty.
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Recoil Reconstruction

* Recoll energy = all non muon energy in a -25, 30 ns window

of the vertex time. hits
Ehoa = a X Z c; b

- Calibrated energy deposits (E) in the detector weigheél by
the energy lost in passive material (c; see table).

Energy lost by a mip Tracker recoil energy resolution as
in each material 05 measured by simulation
OFT T Tttt
Material CH C Fe Pb SIMULATION 3
0.4 C_,ebee 4
dE/dx 1.96 1.74 1.45 1.12 E-"NEE
2 B m
(MeViglcm?) 03 a=0.119 3
b=10.268

Overall scale factor (a)
computed from simulation

vertex Tgt Tgt Tgt Tgt Trk

2 3 4 5
PRELIMINARY
o 1.81 171 160 159 1.62 00F e e e
0 5 10 15 20 25
True recoil energy, E (GeV)

Calorimetric energy resolution, 6/E
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Test Beam

*The MINERVA detector's hadronic energy
response is measured using a dedicated
test beam experiment at the Fermilab Test
Beam Facility (FTFB)

«Custom built beamline took data during
the summer of 2010.

|n addition to a Birk's Law calculation, b
hadronic energy reconstruction uncertainty © vlontotlsnergy = avaabls anergy (Gel)
IS esitmated from difference between test
beam data and GEANT MC.

Custom built beamline

d i(

EH positive pions

data with stat. uncertainty

e
~
|

e
=]

energy response / incoming energy
e
wn
L] I T L]

MC with syst. uncertainty

EH negative pions

e
-~
|

Plus miniature
detector

e
(=]
T T T T

0.5 data with stat. uncertainty

energy response / incoming energy

MC with syst. uncertainty

04 06 08 1 12 14 16 _ 18
pion total energy = available energy (GeV)
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Hardonic Energy Resolution

Resolution on Hadronic Energy (GeV), Lead of Target 2. 0.00 <x < 0.10 Resolution on Hadronic Energy (GeV), Lead of Target 5. 0.00 <x < 0.10 Resolution on Hadronic Energy (GeV), Tracker Modules 45-50. 0.00 <x < 0.10
MINERVA Preliminary 160 MINERVA Preliminary - MINERVA Preliminary
140 u l 600 +
Mean : 0.06 I"' 140 Mean:0.05 I Mean : 0.04 ++
) . [
S 120 RMS : 0.20 I aa bl S 120 RMS:0.18 Pe S 500 RMS : 0.17 +
[0) r 1 l [) L [)) r +
O 100 i O ok I G
2 I 3 100 T 19 400 *
Sy 2 sof | S t
< |4 g | 1} g o,
- c I
L%; 60 | l | L%’ 60 + | 2 t
L = I} C ¢
Z g Z 4o l+ +l = 2000
B + 40 i 1 B ¢
B r B ¢
oof 1 t i . } 100 '
97 ++T +++ 207 T 1 r [ .
L C ¢ r )
ol 11 lgge + I R R R AR L ’L.m e ¢ 0 L T m.’\ T IR TN R w’f!ﬁm L 0" , L eee® .‘ I R AN AR .‘.‘.‘.A. '
-1 -08 -06 -04 02 0 02 04 06 08 1 -1 -08 -06 -04 02 0 02 04 06 08 1 1 -08 -06 -04 02 0 02 04 06 08 1
(Reco-True)/True: Hadronic Energy (GeV) (Reco-True)/True: Hadronic Energy (GeV) (Reco-True)/True: Hadronic Energy (GeV)

*Accuracy of high-energy, low x hadronic showers is very similar
between nuclear targets and tracker modules.
Our simulation adequately accounts for the different geometry

encountered by hadronic showers, regardless of where they
originate.
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Detector Technology

64 channel multi-anode PMT

8x8 pixels

280m

v, Y

w— C "
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c £° "
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"6 = o -'

('5 ) - "-

L 8 L e i . ?\p .
= Tracker Positio

Residual
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A MINERVA Module

Outer Detector
Frame

Scintillator
Bars

Lead collar Steel

= < S _ ivj‘j\"“n&_x_&:ﬁ\ . . |
2 S X -
o] N X | =
RS N :
! 1 \\ Q
Il . ' 0 \
X N N \}.-\
‘ I I ~ N S \'\\\\\:}\ - ’ I l ‘
S, §\ = ’
| supports used
for hanging

modules on

Inner Detector: rails.
Plastic scintillator strips
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