Identifying the Theory of Dark Matter with Direct Detection

Sam McDermott arXiv:1506.04454 and ascl.net/1506.002 with Vera Gluscevic, Moira Gresham, Annika H. G. Peter, and Kathryn Zurek

Motivation

- Dark matter exists
- Large ongoing experimental effort to discover its interactions with the Standard Model
- Imagine we detect dark matter: what information will we be able to extract?
 also, McDermott, Yu, Zurek 1110.4281,

also, McDermott, Yu, Zurek 1110.4281 Gluscevic, Peter 1406.7008, Catena, 1406.0524, 1407.0127

Parameter Space

Direct detection experiments are probing several orders of magnitude in m_{DM}

Improving in σ_{DM} about x2/yr

Could make a discovery soon!

adapted from Snowmass document

Parameter Space

Direct detection experiments are probing several orders of magnitude in m_{DM}

Improving in σ_{DM} about x2/yr

Could make a discovery soon!

adapted from Snowmass document

Observables

Observables

Requirements

- A set of models (hypotheses) & corresponding phenomenology of scattering off nuclei
- A statistical representation of experiments
- An analysis framework for evaluating how well a given hypothesis fits a single data realization

UV-inspired; cf. Gresham and Zurek 1401.3739

- A set of models (hypotheses) & corresponding phenomenology of scattering off nuclei
- A statistical representation of experiments
- An analysis framework for evaluating how well a given hypothesis fits a single data realization

Requirements

UV-inspired; cf. Gresham and Zurek 1401.3739 given by an EFT; cf. Haxton et al 1203.3542 and 1308.6288

- A set of models (hypotheses) & corresponding phenomenology of scattering off nuclei
- A statistical representation of experiments
- An analysis framework for evaluating how well a given hypothesis fits a single data realization

Requirements

UV-inspired; cf. Gresham and Zurek 1401.3739 given by an EFT; cf. Haxton et al 1203.3542 and 1308.6288

- A set of models (hypotheses) & corresponding phenomenology of scattering off nuclei
- A statistical representation of oversiments Bayesian model
- An analysis framework for C Peter 1406.7008 vell a given hypothesis fits a single data realization

EFT of DD

$$\frac{d\sigma_T}{dE_R}(E_R, v) = \frac{m_T}{2\pi v^2} \sum_{(N,N')} \sum_X R_X \left(E_R, v, c_i^{(N)}, c_j^{(N')} \right) \widetilde{W}_X^{(N,N')}(y)$$

"particle physics"

given a Lorentz-invariant theory, calculate the low energy, nonrelativistic cross section

nuclear form factors

given a Lorentz-invariant theory, nuclear physics measurements predict nuclear responses

 $X = M, \Sigma', \Sigma'', \Phi'', \Delta, M\Phi'', \Delta\Sigma' \text{ (responses)}$

 $y \equiv m_T E_R b^2 / 2$, $(b/\text{fm})^2 \equiv 41.467 / (45A^{-1/3} - 25A^{-2})$

Particle Physics: R_X

lowest-dimension, least-suppressed Lorentz-invt. products of DM fermion bilinears with SM fields

• "standard" — SI ($\bar{\chi}\chi\bar{f}f$), SD ($\bar{\chi}\gamma^{\mu}\gamma_{5}\chi \bar{f}\gamma_{\mu}\gamma_{5}f$)

 photon-mediated — millicharged (χ̄γ^μχA_μ), anapole (χ̄γ^μγ₅χ∂^μF_{μν}), magnetic dipole (χ̄σ^{μν}χF_{μν}), electric dipole (χ̄σ^{μν}γ₅χF_{μν})

UV theory \Rightarrow overall momentum and velocity dependence, triggered responses

"Nuclear Physics": \widetilde{W}_X

- form factor = how rate falls off at higher energy
- depends on target, response, and energy

number of form factors =

= number of targets × number of responses

Statistical Methodology

$$\mathcal{E}(\{E_R\}|\mathcal{M}) = \int d\Theta \mathcal{L}(\{E_R\}|\Theta, \mathcal{M}) p(\Theta|\mathcal{M})$$

given model

observed (noisy) energy spectrum

$$\Pr(\mathcal{M}_j) = \frac{\mathcal{E}(\{E_R\}|\mathcal{M}_j)}{\sum_i \mathcal{E}(\{E_R\}|\mathcal{M}_i)}$$

free parameters $(\sigma_{DD} \text{ and } m_{DM})$

"What are the odds" of extracting the true underlying model from the data?

Statistical Methodology

$$\mathcal{E}(\{E_R\}|\mathcal{M}) = \int d\Theta \mathcal{L}(\{E_R\}|\Theta, \mathcal{M}) p(\Theta|\mathcal{M})$$
given model

observed (noisy) energy spectrum

$$\Pr(\mathcal{M}_j) = \frac{\mathcal{E}(\{E_R\}|\mathcal{M}_j)}{\sum_i \mathcal{E}(\{E_R\}|\mathcal{M}_i)}$$

free parameters $(\sigma_{DD} \text{ and } m_{DM})$

(Note: not maximizing a χ^2 statistic or finding a best fit)

Mock data

need to make mock data sets $\{E_R\}$

simulate G2-like experiments

Label	A (Z)	Energy window [keVnr]	Exposure [kg-yr]
Xe	131 (54)	5-40	2000
Ge	73(32)	0.3-100	100
Ι	127 (53)	22.2-600	212
${ m F}$	19 (9)	3-100	606
Na	23(11)	6.7-200	38

choose m_{DM}, set o_{DD} just below current limits

Criterion for Success

%

$$\Pr(\mathcal{M}_j) = \frac{\mathcal{E}(\{E_R\}|\mathcal{M}_j)}{\sum_i \mathcal{E}(\{E_R\}|\mathcal{M}_i)} > 90$$

true underlying model is "confidently selected" if Pr(M_{true})>90%

this depends on the Poisson realization

create many Poisson realizations to test robustness

Results (example)

single elements not so good

Results (example)

Complementarity!

Conclusions

- A conclusive direct observation of DM will just be the beginning of the work
- Target complementarity will be a critical requirement for learning about DM physics