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Introduction

I Run-2 of the LHC provides new challenges in the form of greater
luminosities and higher energy.

I In preparation, ATLAS has made developments in hardware, algorithms,
and software.

I We will highlight key developments and their impact on performance.

I A brief glance at early Run-2 data will be provided.



4/33

ATLAS Inner Detector (Run-1)

I Pixel detector - 82
million silicon pixels

I Semiconductor
Tracker (SCT) - 6.2
million silicon
microstrips

I Transition Radiation
Tracker (TRT) - 350k
drift tubes

I Barrel (|η| . 1) and
endcap
(1 . |η| . 2.5) for
each

I 2 T axial magnetic
field
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Long Shutdown 1 (LS1)
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After Re-installation

I During LS1, the pixel detector and
beampipe were removed completely.

I This allowed the recovery of 3% of
the pixel modules; now at 98%
capacity (see figure)

I Diamond Beam Monitor (DBM) -
upgrade/addition to luminosity
detector

I Size of beampipe was reduced,
allowing for an...

I ...all-new pixel layer, the Insertable
B-Layer (IBL)
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Insertable B-Layer (IBL)

I Improves track and vertex
reconstruction performance
for higher luminosities

I Will alleviate effect of
radiation damage

I Extra point → more robust
tracking

I 99.5% of modules active

I See talk earlier today by
Shih-Chieh Hsu for more
detail

https://indico.cern.ch/event/361123/session/6/contribution/376
https://indico.cern.ch/event/361123/session/6/contribution/376
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Transverse position of clusters
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x-y position of inner detector component clusters in the barrel region. The
left is a zoomed in version of the right. These come from studies used to
map out detector material. Note that some HV TRT lines were disabled in
the test run.
Refer to: IDTR-2015-001
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Impact Parameter Resolution (d0 and z0)
The differences in IP resolution from Run-1 to Run-2.

 [GeV]
T

p

-110×4 1 2 3 4 5 6 7 8 910 20

m
]

µ
) 

[
0

(dσ

0

50

100

150

200

250

300

350

400
ATLAS Preliminary

 < 0.2η0.0 < 
 = 8 TeVsData 2012, 

 = 13 TeVsData 2015, 

 [GeV]
T

p

-110×4 1 2 3 4 5 6 7 8 910 20

20
15

/2
01

2

0.6
0.8

1  [GeV]
T

p

-110×4 1 2 3 4 5 6 7 8 910 20

m
]

µ
) 

[
0

(zσ

0

100

200

300

400

500

600
ATLAS Preliminary

 < 0.2η0.0 < 
 = 8 TeVsData 2012, 

 = 13 TeVsData 2015, 

 [GeV]
T

p

-110×4 1 2 3 4 5 6 7 8 910 20

20
15

/2
01

2

0.6
0.8

1

I d0: transverse impact parameter

I z0: longitudinal impact parameter

I IBL improves IP resolution of down to a factor of 1/2

I IBL pixels smaller in z-direction than other layers

I Note: these are with pre-final alignment

Refer to: IDTR-2015-007
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Summary of Inner Detector Track Reconstruction

1. space point formation
I clusters formed from adjacent cells in Si

detectors

2. seeded track finding
I 3 space points used as seeds
I Kalman filter evaluates seeds and

attempts to complete tracks

3. ambiguity solving
I awards good, unique hits
I penalizes holes, shared hits

4. TRT extension
I in certain regions, resolution improved

by looking at hits in TRT
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Software techniques

Factor of 4 speedup in ID
reconstruction for Run-2

I coding improvements

I tracking in dense environments
(more on this later)

I algorithmic changes (process
good seeds first)

I categorize seeds based on hit
content (e.g. 2 Pixel + 1 SCT)

I categorization used to
determine order of seed
processing

I additional space point required
to process

Refer to: ATL-SOFT-PUB-2014-004

https://cds.cern.ch/record/1955923
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Tracking in Dense Environments (TIDE)

I In the cores of high-pT jets and τ -leptons,
track separations are of a distance
comparable to the spacing of the Inner
Detector sensors

I In the track reconstruction, an artificial
neural network (NN) is employed to resolved
ambiguities in cases where multiple tracks
overlap in a pixel cluster

I The application of this NN has been delayed to later in the track
reconstruction sequence so that is now able to use track information

I NN is better able to identify shared pixel clusters from multiple charged
particles

I 10% decrease in CPU demands

Refer to: arXiv:1406.7690, ATL-PHYS-PUB-2015-006

http://arxiv.org/abs/1406.7690
https://cds.cern.ch/record/2002609
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Improvement to track reconstruction efficiency
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I Measureable improvement in
efficiency to reconstruct a track
inside a jet

I Reconstruction efficiency is less
pT -dependent

I Recovers nearly half of
previously-missed jet decay particles
produced out to a few centimeters
(given that the particle makes it
through the silicon layers)
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Impact on b-tagging

I Improved setup improves
reconstruction in the core of both
light and b-jets

I Up to nearly a factor of 2
improvement in b-tagging efficiency
at high pT

I here light jet rejection is comparable
to Run-1 configuration (at working
point of 70% b-jet identification)
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Inner Detector Alignment

I determine position/orientation of entirely new layer (IBL)

I removal / refurbishing of pixel layer caused components to be displaced
from where they were in Run-1 (within ∼ 0.1 mm)

I minimize a global χ2 w.r.t. many tracks, where d.o.f. are position and
rotation of the components, to align the description of the detector
components

I alignment is done on 3 scales sequentially: big structures, layers,
modules

I several iterations
I March: alignment performed with cosmic ray data
I June: alignment improved with

√
s = 13 TeV commissioning beam

Refer to: ATL-PHYS-PUB-2015-009 (cosmics), ATL-PHYS-PUB-2015-031 (collisions)
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Inner Detector Alignment: Performance
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Shown here: (unbiased)
track-hit residuals, the
distance from the
extrapolated track in a
detector element to the hit
recorded in that element.
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Basic performance

Run 2:
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Discrepancy in pixel hits understood: different
description of overlap of IBL staves in MC and data.
Drop-off at negative η from temporarily disabled
modules not accounted for in simulation. (see
backup)
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Vertexing performance

Good performance; reasonable
data/simulation agreement.
Compatible with the
agreement in physics
modelling described by the
first minimum-bias
measurement at

√
s = 13 TeV

(ATLAS-CONF-2015-028).
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taking ratio of events with reconstructed
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K 0
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Charged particle production
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Refer to: ATLAS-CONF-2015-028

https://cds.cern.ch/record/2037701
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Conclusion

I ATLAS has extended and upgraded their detector and several aspects of
their software

I Commissioning with Run-2 data well underway

I Improvements to reconstruction efficiency and resolution will come
without a significant increase in computing demands

I Inner detector track
reconstruction utilized in
measurement of
charged-particle
production

I Exciting time to continue
to apply these
enhancements in the
search for new physics!
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Conclusion

Thank you!
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Hadronic interactions
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Impact Parameter Resolution (d0 and z0)

The difference in IP resolution from Run-1 to Run-2 as a function of η.
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The improvement to IP resolutions from the IBL as a function of
pseudorapidity amounts to a factor of roughly 1/2.
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Resolution of depleted pixel hits
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Other basic performance plots
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as explained before.
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Efficiency to extend track
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SCT (left) and from the silicon detectors to TRT (right)
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Impact Parameter distributions

 [mm]0d

1− 0.5− 0 0.5 1

F
ra

ct
io

n 
of

 tr
ac

ks

4−10

3−10

2−10

1−10

1
ATLAS Preliminary

 dataµ = 13 TeV, Low- s
Data

MC

Loose Track Selection 

 [mm]0z

1.5− 1− 0.5− 0 0.5 1 1.5

F
ra

ct
io

n 
of

 tr
ac

ks

3−10

2−10

1−10

1

ATLAS Preliminary

 dataµ = 13 TeV, Low- s Data

MC

Loose Track Selection 

Transverse (left) and longitudinal (right) impact parameter distributions
w.r.t. the primary vertex, at 〈µ〉 ≈ 0.005.



28/33

Inner Detector Alignment: Performance
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Vertexing

Track kinematic variables for
leading vertex in low-µ (top) and
all vertices in high-µ (bottom)
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Vertexing performance

 Z [mm]∆

20− 15− 10− 5− 0 5 10 15 20

E
nt

rie
s 

/ 0
.1

 m
m

0

2

4

6

8

10
310×

-1 = 13 TeV, 177.4 nbs
Data 15

Monte Carlo

ATLAS Preliminary

 Z [mm]∆

20− 15− 10− 5− 0 5 10 15 20

D
at

a 
/ M

C

0.6

0.8
1

1.2
1.4

Longitudinal separation of reconstructed vertices, in high-µ data. This shows
the resolving power of the vertex reconstruction.
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Resolution scale factors
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Resolution scale factors using the split-track method (in the x , y , and z
directions, respectively)
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Primary Vertex resolution
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Primary Vertex resolution (scaled by K -factors) vs. number of tracks, in the
x , y , and z directions respectively. K -factors are derived from the split-track
method.
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TIDE
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Efficiency to reconstruct
2-prong ρs and 3-prong τs,
with the new TIDE compared
to the Run-1 baseline. The left
plots have the additional
requirement that there are no
secondary decays from
interactions with the detector
material.
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