Constructing an Inclusive Lepton Early Warning System

Christopher Willis Michigan State University

DPF Conference 2015 Thursday August 6, Ann Arbor MI

Introduction

- 1) The Need
- Philosophy and Motivation
- 2) The Idea
- Building an Inclusive lepton analysis
- Fitting Run-I Data
- 3) Proving it can work
 - Tests in the Electron and Muon Channels
- 4) Conclusion

The Need for an EWS

The Need for an EWS

The EWS Idea

- Be as unbiased as possible
- Use lepton pT
- Compare data to fitted background
- Refit as new data become available

From Idea to Reality: Building an inclusive Z' Analysis

- Want to generalize Dilepton Analysis Selection
 - Dilepton Search requires two high pT, well isolated leptons
 - Relax requirements to be fully inclusive
- Isolating a Signal
 - Able to isolate signal with MET cut or 2-lepton requirement

From Idea to Reality: Fitting to Run-I Data

- Ultimately want to fit to data
 - Avoid any mismodelling in MC
- Parameterize backgrounds with smoothly falling function
 - Dijet function as nominal case
- Fit done on [125,300]
 GeV
 - Extrapolation to 2.0 TeV
 - Strategy: refit as data come in

Muon Resolution Considerations

- What about the Muons?
 - Crucial question: "Is resolution in Muon channel adequate to confirm hint from Electron channel?"
 - Answer by doing comparison
- Luminosity Study
 - Generated signal and background MC samples using ResBos
 - Minimal Selection
 - Used ATLAS resolution functions to smear truth level MC

$$\frac{\sigma(p_T)}{p_T} = p_1 \oplus \frac{p_0 p_T}{\sqrt{1 + (p_3 p_T)^2}} \oplus p_2 p_T$$

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

Proving It Works

- Quantify "Luminosity-Lag" via Pseudo-Experiments
- Build up distribution of p-values at each luminosity scale
- Use median ensemble value as metric to quantify "Lumi-Lag"

Pseudo-Experiment Results

- Results for 2.5
 TeV SSM Z'
 - 3σ excess at 2.0/fb (2.8/fb) for Electrons (Muons)
 - Lumi-Lag = 0.8/fb
- Bottom line: Muons aren't a deal breaker

Conclusion

- Discussed the Need for an EWS
 - Not meant to be a discovery tool or rival analysis
 - Instead a tool to provoke discussion and make strategy decisions ("Are we in discovery or exclusion mode?")
- Presented the EWS idea: use inclusive lepton pT
 - Discussed how to build the inclusive lepton pT distribution
 - Showed that choice of fit and extrapolation is robust against range and luminosity scale
- Showed that EWS can work
 - Discussed Muon Resolution issues: Not a deal breaker
 - Quantified the "Luminosity Lag" between Electron and Muon channels
- Actively used in ATLAS right now

Backup

Event Selection Details

Event Level Selection

- Event is in the Good Runs List;
- Event has at least one primary vertex, with number of tracks > 2;
- Event passes the triggers: EF_e24vhi_medium1 || EF_e60_medium1 || EF_g35_loose_g25_loose;
- Event fulfills LArError < 2, which provides protection against noise bursts and data corruption;

Object Level Selection

- Each electron has author 1 or 3;
- Each electron must have |η| < 2.47 excluding the crack region 1.37 < |η| < 1.52;
- Each cluster must pass calorimeter quality requirements;
- Each electron must have p_T > 40 GeV;
- Each electron must have at least isEM MEDIUM++ identification;
- Each electron must be isolated using an E_T dependent cut: EtCone20_pT_NPV_corrected < 0.007 × E_T + 5.0 GeV;
- To be fully inclusive, in case multiple event electrons satisfy the requirements above, all passing electrons are selected.

Fitting Dijet function to Pseudo-Data

 Established fit works for MC and Data at 20.3 / fb

- What about for different luminosities?
- Want to simulate data collection
 - Treat inclusive lepton pT distribution 10³
 from Run-I data as template to 10⁴
 randomly sample from 10
 - Use sampled values to build up "new" inclusive lepton pT "Pseudo-Data" distribution
 - Repeatedly try refitting and extrapolating after sampling some characteristic number of events
 - Works consistently through 20.3 / fb
- Pseudo-Experiments provide credibility that fit works at different luminosity scales

Pseudo-Experiment Procedure

Pseudo-Experiments

- 1. The inclusive lepton pT spectrum is set to a specified integrated luminosity
- 2. Poisson Random Numbers are thrown using the histogram bin content as the Poisson mean
 - (a) according to the S+B hypothesis: the lepton pT spectrum + Z' signal.
 - (b) according to the B-Only hypothesis: the lepton pT spectrum only.
- 3. To account for the Look-Elsewhere-Effect, Fisher's Method is sued to combine bin-by-bin local p-values
- 4. Repeat 1e5 times to generate an ensemble
- 5. Build up distribution of global p-values

p-value distribution at 2.0 / fb for Electron Channel

Results for a 0.5 TeV SSM Z'

