Search for scalar top with R-Parity Violating decay (ATLAS-CONF-2015-015)

Evelyn Thomson, Brett Jackson, Leigh Schaefer University of Pennsylvania **Zach Marshall LBNL** b

h

Overview

Selection

- **>2** leptons ee, eμ, μμ
- >2 b-jets
- Resonance: lepton + b-jet

Backgrounds

>t tbar, Wt, Z/γ*+jets

Results from Run 1

SUSY and proton decay

OR

R=(-1) ^{3(B-L)+2s}

Assume R-Parity conservation > Proton stable ($p \neq e^+ \pi^0$) since RPC forbids both baryon and lepton number violation

Lightest SUSY particle (LSP) is also stable

- Neutral LSP is a good dark matter candidate
- Conventional SUSY signatures have missing momentum at LHC

Add a new U(1) B-L symmetry Proton still stable since only lepton number violation allowed "Collider" LSP has lepton number violating decay >No missing momentum! Unique signature if scalar top decays to a charged lepton and b quark Gravitino LSP decays slowly enough to be dark matter Symmetry spontaneously broken by RH sneutrino to give massive B-L gauge boson (TeV)

3

<u>B-L model</u>

Stop pair production abundant through usual RPC processes Stop LSP decays promptly through RPV process

Stop LSP decay: Z. Marshall,
B.A. Ovrut, A. Purves, S. Spinner
1402.5434, 1401.7989

Minimal SUSY B-L: B. A. Ovrut,
A. Purves, S. Spinner 1503.01473,
1412.6103, 1203.1325

Minimal RPV: P. Fileviez Perez,
S. Spinner 1308.0524, 1201.5923;,
0904.2213, 0811.3424; with V. Barger
0812.3661; with L.L. Everett 0906.4095

Heterotic string theory: M. Ambroso,
B.A. Ovrut 1005.5392, 0904.4509;
V. Braun, Y.-H. He, B.A. Ovrut
hep-th/0602073; with T. Pantev
0512177, 0501070

Stop mass (GeV)	Pair production xs (fb)		
	√s = 8 TeV	√s=13 TeV	
500	86 ± 13	518 ± 69	
800	2.9 ± 0.6	28 ± 4	
1000	0.44± 0.12	6.4 ± 1.0	
1400	-	0.46± 0.10	

M. Kramer et al. 1206.2892

C. Borschensky et al. 1407.5066

ATLAS detector

Triggers ▶93-98% efficient **Identify Muons** Momentum resolution 5% at 500 GeV **Identify Electrons Energy resolution 9%/√E** Anti-k₊ Jets with R=0.4 ➢ Energy resolution 45%/√E **Identify b-jets** >80% efficiency per b-jet, rejection factor 25

5

Selection

Require two leptons (electrons or muons) and two b-jets, all with p_T> 40 GeV

Selection	$\mid m_{\tilde{t}} = 500 \ GeV$	$m_{\tilde{t}} = 800~GeV$	$m_{\tilde{t}} = 1000~GeV$
$\sigma \cdot L$	$ 1750 \pm 260$	59 ± 12	8.9 ± 2.5
bbll Z voto	624 ± 4	19.65 ± 0.18 10.62 \dot 0.18	2.68 ± 0.05
L veto $H_T \ge 1100 \text{ GeV}$	019 ± 4 122.9 ± 1.8	19.02 ± 0.18 16.01 ± 0.17	2.58 ± 0.05 2.50 ± 0.04
$m_{b\ell}$ asymmetry ≤ 0.2	$ 112.8 \pm 1.7$	14.00 ± 0.15	2.11 ± 0.04
$m_{b\ell} \ge 400 \text{ GeV}$ $m_{b\ell} \ge 600 \text{ GeV}$	$\begin{vmatrix} 110.3 \pm 1.7 \\ 7.7 \pm 0.4 \end{vmatrix}$	13.74 ± 0.15 12.86 ± 0.15	2.09 ± 0.04 1.99 ± 0.04

- Main backgrounds from ttbar, Wt, Z/ γ^* with associated b jets
- Reject Z+jets with cut on invariant mass of two sameflavor leptons around Z resonance
- Reduce all with H_T>1100 GeV, scalar sum of transverse momentum of two leading leptons and two
- 6 leading b-jets

Entries/100 GeV

Selection II

Expect signal to have a resonance in lepton + b-jet invariant mass m_{bl} for each lepton and b-jet pair

➢ Reject backgrounds with very different values of m_{bl} for each pair: asymmetry < 0.2</p>

Define two signal regions using highest m_{bl} > 400 or 600 GeV

Background estimate

Dedicated control regions to set background rate for ttbar (Top CR) and Z+jets (Z CR)

Several validation regions, especially at higher H_T

Validation regions

Good agreement for fitted background estimate with data in validation regions (show all, ee, µµ, eµ for each region)

Results from Run 1

	SR 400	$\mathrm{SR}~400~ee$	SR 400 $\mu\mu$	SR 400 $e\mu$
Observed	2	0	2	0
Fitted background	1.39 ± 0.35	0.36 ± 0.15	0.57 ± 0.20	0.45 ± 0.11
Fitted $t\bar{t}$ Fitted Z/γ^* +jets Single Top Other	0.33 ± 0.09 0.54 ± 0.28 0.44 ± 0.08 0.07 ± 0.04	0.07 ± 0.08 0.20 ± 0.10 0.10 ± 0.03 ≤ 0.01	0.07 ± 0.02 0.35 ± 0.18 0.11 ± 0.03 0.04 ± 0.02	0.19 ± 0.05 ≤ 0.01 0.23 ± 0.05 0.03 ± 0.03
Input SM	1.2	0.30	0.46	0.43
Input $t\bar{t}$ Input Z/γ^*+ jets Input single Top Input other	$\begin{array}{c} 0.30 \\ 0.38 \\ 0.44 \\ 0.07 \end{array}$	$0.06 \\ 0.14 \\ 0.10 \\ 0.00$	$\begin{array}{c} 0.06 \\ 0.24 \\ 0.11 \\ 0.04 \end{array}$	$\begin{array}{c} 0.17 \\ 0.00 \\ 0.23 \\ 0.03 \end{array}$
$\sigma_{\rm vis}$ [fb] Observed $N_{\rm non-SM}$ Expected $N_{\rm non-SM}$	$\begin{array}{r} 0.23 \\ 4.8 \\ 4.0^{+2.2}_{-1.1} \end{array}$	$\begin{array}{c} 0.11\\ 2.2\\ 3.2^{+1.7}_{-1.1}\end{array}$	$\begin{array}{r} 0.26 \\ 5.4 \\ 3.6^{+1.9}_{-1.5} \end{array}$	$\begin{array}{r} 0.11 \\ 2.3 \\ 3.3^{+1.8}_{-1.3} \end{array}$

<u>Limits</u>

Interpretation

 Better reach than LQ searches for eejj and µµjj (no valley in middle)
3rd generation LQ search covers ττbb top corner

> Neutrino masses would be linked to collider physics through RPV

 $\tilde{t}_1 \tilde{t}_1$ production, $\tilde{t}_1 \rightarrow b\ell$

ATLAS Preliminary

 $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹

Observed 95% CL mass limit

1100

1000

900

800

700

600

500

1.0

 $Br(t \to b\tau)$

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Summary

Sourced for pair production of scalar top with RPV decay in 20 fb⁻¹ of Run 1 ATLAS data at Vs=8 Tot Excluded soc from 500-1000 GeV for branching fractions of at least 20% to eb or µb **ATLAS-CONF-2015-015**

Plan to search again with Run 2 ATLAS data at vs=13 TeV

- 15x higher production rate for 1000 GeV mass scalar top
- 3x higher top backgrounds
- 1.7x higher Z+jets backgrounds

New IBL layer at r=3.3 cm and identification of boosted b-jets

Conventional MSSM

<u>B-L model</u> Add RH neutrinos and superpartners Add new massive B-L gauge boson

Control regions

Determine ttbar and Z+jets background levels from dedicated control regions

<u>Run 1 vs Run 2</u>

Inclusive cross sections for signal and backgrounds

Model

- signal with MadGraph+PYTHIA
- ttbar and Wt with POWHEG+PYTHIA
- Z+jets with Sherpa

Stop mass (GeV)	Pair production xs (fb)		
	√s = 8 TeV	√s=13 TeV	
500	86 ± 13	518 ± 69	
800	2.9 ± 0.6	28 ± 4	
1000	0.44± 0.12	6.4 ± 1.0	
1400	-	0.46± 0.10	

BKG	xs (fb)		
	√s = 8 TeV	√s=13 TeV	
ttbar	253,000	832,000	
Z/γ*→II	1122,000	1906,000	
Wt	22,000	70,000	

Stop by M. Kramer et al. 1206.2892, and by C. Borschensky et al. 1407.5066 ttbar from top++ 2.0 by M. Czakon and A. Mitov 1112.5675 Wt by N. Kidonakis 1506.04072 (quoted 173.3 GeV) Z+jets from FEWZ by C. Anastasiou et al. hep-ph/0312266 (quoted 66-116 GeV)

<u>Results</u>

	SR 600	SR 600 ee	SR 600 $\mu\mu$	SR 600 $e\mu$
Observed	1	0	1	0
Fitted background	0.55 ± 0.15	0.15 ± 0.06	0.24 ± 0.10	0.16 ± 0.06
Fitted $t\bar{t}$ Fitted Z/γ^* +jets Single Top Other	0.10 ± 0.02 0.23 ± 0.12 0.18 ± 0.04 0.04 ± 0.01	$\begin{array}{l} 0.03 \pm 0.01 \\ 0.08 \pm 0.05 \\ 0.03 \pm 0.01 \\ \leq 0.01 \end{array}$	≤ 0.01 0.15 ± 0.08 0.05 ± 0.02 0.04 ± 0.02	$\begin{array}{c} 0.07 \pm 0.03 \\ \leq 0.01 \\ 0.09 \pm 0.03 \\ \leq 0.01 \end{array}$
Input SM	0.47	0.12	0.20	0.16
Input $t\bar{t}$ Input Z/γ^* +jets Input single Top Input other	$0.09 \\ 0.16 \\ 0.18 \\ 0.04$	0.03 0.06 0.03 0.00	$0.00 \\ 0.10 \\ 0.05 \\ 0.04$	$0.06 \\ 0.00 \\ 0.09 \\ 0.00$
$\sigma_{\rm vis}$ [fb] Observed $N_{\rm non-SM}$ Expected $N_{\rm non-SM}$	$\begin{array}{c} 0.19 \\ 3.9 \\ 3.5^{+1.9}_{-1.4} \end{array}$	$\begin{array}{c} 0.10 \\ 2.1 \\ 2.6^{+1.6}_{-0.6} \end{array}$	$\begin{array}{c} 0.20 \\ 4.0 \\ 3.0^{+1.7}_{-1.0} \end{array}$	$\begin{array}{r} 0.10\\ 2.1\\ 2.7^{+1.6}_{-0.7}\end{array}$

