Search for associated production of a Higgs boson with a single top quark

Ken Bloom for the CMS Collaboration 6 August 2015

At the bottom

- We all know the four favorite Higgs production mechanisms and tend to forget about another
- The SM cross section for single top plus Higgs production is ~1000x smaller than that for gluon fusion
- $\sigma(tHq) = 18.3 \text{ fb}$
- Why even bother looking?

Discovery through interference

- Small cross section due to destructive interference between two diagrams
- Should the sign of the top Yukawa coupling be inverted (yt = -1), interference is constructive, and cross section is x13 larger!
- $y_t = -1$ disfavored, but not eliminated
 - Composite Higgs, FCNC processes could enhance cross section further

- CMS has completed four direct searches for the tHq process
 - $H \rightarrow \gamma \gamma$: Smallest branching ratio but very pure; BR enhancement
 - ► H→WW/TT multileptons: small branching ratio, non-prompt lepton backgrounds
 - $H \rightarrow \tau_{had} \tau_{l}$: similar issues, smaller rate (new result!)
 - $\vdash H \rightarrow b\overline{b}: \text{Largest branching ratio but very large t\overline{t} background$
- A number of commonalities among the searches:
- All searching for the anomalous $(y_t = -1)$ production mode
- All take advantage of top-quark semi-leptonic decay
- All have tt as their most significant background
- Combined result takes inputs from all four channels (new result!)

$H \rightarrow \gamma \gamma$: selection

- Two high-pT photons
 - Signal region 122 < m_{YY} < 128
 GeV
 - Use sidebands for background estimate
 - One isolated μ or e

One b jet

One forward jet

- Resonant backgrounds from other processes with $H \rightarrow \gamma \gamma$
 - Reduce with cut on likelihood discriminant formed from kinematic quantities distinguishing tt from t, estimate from simulations
- Remaining backgrounds have smooth shape in $m_{\gamma\gamma}$
- Fit my spectrum with an exponential function, use higher-statistics control regions to estimate systematic uncertainties

Process	Yield		
tHq, y _t = -1	0.67		
ttH	0.03 + 0.05		
VH	0.01 + 0.01		
other H	0		
Note: yields include increases in $B(H \rightarrow \gamma \gamma)$			

due to $y_t = -1$

$H \rightarrow \gamma \gamma$: results

- Zero events in sidebands
- Zero events in signal region
- Set 95% CL upper limit of 4.1 × $\sigma_{tHq}(y_t = -1)$
- Observed limit coincides with expected limit

CMS HIG-14-001

$H \rightarrow WW/TT \rightarrow leptons: selection$

- Same-sign dilepton final state
 - $\mu\mu$ and $e\mu$
 - At least one b-tagged jet
 - At least one central jet
 - At least one forward non b-tagged jet
 - Reject **T**had

- ~1/2 background is from nonprompt leptons, mostly from tt
- Estimate rate with "tight-loose method," fake rate taken from control samples and then applied to ID/isolation sideband regions
- Also account for charge mis-ID, get rate from Z events
- Discriminating likelihood formed from information on forward activity, jet and b-jet multiplicity, lepton kinematics/charge

CMS HIG-14-026

- Set limit through likelihood fit
- Combine three channels
- Expected UL: $5.0^{+2.1}$ -1.4 × $\sigma_{tHq}(y_t=-1)$ at 95% CL
- Observed UL: 6.7 × $\sigma_{tHq}(y_t=-1)$ at 95% CL
- Largest systematic uncertainties from non-prompt lepton rate estimate

Search for tHg — K. Bloom

H→TT: selection

Very much like the trilepton analysis, but use a hadronic **τ**

Same-sign $e\mu$ or $\mu\mu$

- Careful attention to lepton isolation, multivariate technique
- Isolated au_h , opposite sign

• At least one b jet

- Largest background is from tt with non-prompt leptons
- As in multilepton analysis, determine a fake rate and apply it in a sideband sample to estimate background level
- Linear discriminant to separate backgrounds, using properties of most-forward jet, b-jet properties, other kinematic variables
 - Sample with inverted **τ** isolation used for training, validation

Process	$e\mu\tau_h$	$\mu\mu\tau_{\rm h}$
tHq, $C_t = -1$	0.42 ± 0.05	0.26 ± 0.03
$tHW, C_t = -1$	0.06 ± 0.01	0.04 ± 0.01
tīH	0.6 ± 0.1	0.3 ± 0.1
tīV	1.8 ± 0.4	0.9 ± 0.2
VV	0.7 ± 0.1	0.3 ± 0.1
Reducible	6.3 ± 3.1	4.5 ± 1.9
Tot. background	9.5 ± 3.7	5.4 ± 2.4
Data	5	7

H→TT: results

- Maximum likelihood fit to set limits
- Expect: < $||^{+6}_{-4} \times \boldsymbol{\sigma}_{tHq}(y_t = -1)$ at 95% CL
- Observe: $< 9 \times \sigma_{tHq}(y_t = -1)$ at 95% CL
- Largest systematic uncertainties from non-prompt lepton estimate, but statistical uncertainties dominate CMS HIG-14-027

$H \rightarrow b\overline{b}$: selection

- One isolated high-pT lepton
- Missing energy from ν
- Three or four b jets
- Extra non-b jet (either forward or higher in pT)

Lots of tt backgrou	und!
---------------------	------

Sample	S/B
3 b jets	13/1900
4 b jets	1.4/66

$H \rightarrow b\overline{b}$: multivariate approaches everywhere

- Need to assign each of the jets to parent quarks of final state
 - Develop multivariate discriminator based event quantities such as invariant masses, Δ R's, jet η and pT values, jet charges
- Choose single best assignment of jets to quarks as reconstruction hypothesis
- Do this separately under two different assumptions of initial state: tHq signal and tt background
- With tHq and tt reconstructions done, form kinematic quantities specific to each of the reconstructions and develop another discriminator based on them that distinguishes the two processes
- Use templates in this variable to extract the tHq signal fraction
- **t** template from simulation, allowing tt+HF fraction to vary
- Verified with data-driven method that makes use of two-tag events, results are consistent

H→bb: results

- Expected upper limit: $5.2^{+2.1}_{-1.7} \times \sigma_{tHq}(y_t=-1)$ at 95% CL
- Observed upper limit: 7.6 × **σ**_{tHq}(y_t=-1) at 95% CL
- Largest systematic uncertainties from tt modeling and b-tag efficiencies/mistag rates

CMS HIG-14-015

Combined results

CMS HIG-14-027

σ _{95%} /σ _{yt=-1}	Η→γγ	H→WW/ _{TI} TI	H→τ _l τ _h	H→bb
Expected	4.1	5.0	11.4	5.4
Observed	4.1	6.7	9.8	7.6

- Put it all together in likelihood fit many bins, parameters....
- Check sensitivity to $y_t = -1$, count any enhancement to tHq and $H \rightarrow \gamma \gamma$ as signal
 - Expect < 2.0 × $\sigma_{tHq}(y_t=-1)$, observe 2.8 × $\sigma_{tHq}(y_t=-1)$ at 95% CL

Also, quote limit on σ_{tHq} as a function of B(H $\rightarrow\gamma\gamma\gamma$)

- tHq production rate is sensitive to the sign of the top Yukawa couplings and other new physics
- CMS has completed searches for tHq in four different final states
 - New result in the $H \rightarrow \tau_{had} \tau_l$ channel
- Set cross section limit < 2.8 $\times \sigma_{tHq}(y_t=-1)$ @ 95% CL with 20 fb⁻¹
 - Combination is a new result
- Not yet sensitive to the anomalous production, but
 - σ_{tHq} is x4 larger at 13 TeV, should have enough LHC data in 2016 to exclude (or discover?) the y_t =-1 hypothesis
 - Beyond that, can set limits in the $(\mathbf{K}_f, \mathbf{K}_V)$ plane, have sensitivity to Higgs-mediated FCNC processes tHq with q = u, c, and more
- Interesting opportunities ahead for Run 2 in these searches!