

Neutrino Physics Prospects with PINGU

Tyce DeYoung
Department of Physics and Astronomy
Michigan State University

PRECISION ICECUBE NEXT
GENERATION UPGRADE

DPF 2015 Ann Arbor, Michigan August 7, 2015

Oscillation Physics with Atmospheric Neutrinos

- Neutrinos available over a wide range of energies and baselines
 - Oscillations produce distinctive pattern in energy-angle space
 - Approach: control systematics using events in "side band" regions – trade statistics for constraints on systematics
- Neutrinos oscillating over one Earth diameter have a v_{μ} survival minimum at ~25 GeV
 - Hierarchy-dependent matter effects on v or v̄ (MSW etc.) below 10-20 GeV

Current IceCube Oscillation Results

- Real analysis is 2D to maximize constraints on systematics
 - Data projected onto reconstructed (L/E_v) here for illustration
 - Shaded range shows systematic uncertainties allowed by IceCube data
- Details and results in J. Hignight's talk (next)

PINGU

PRECISION ICECUBE NEXT

- Baseline 4 MTon detector: 40 additional strings at 22 m spacing, with Digital Optical Modules spaced 3 m vertically, deployed inside IceCube DeepCore
 - Compare to 72 m string spacing and 7 m DOM spacing for DeepCore
 - ~25x higher photocathode density
 - Additional in situ calibration devices will better control detector systematic (not included in projections)
- Achieve few GeV energy threshold
- Engineering and costs are well understood from IceCube

Top view of the PINGU new candidate detector

Signatures of the Neutrino Mass Hierarchy

• Matter effects alter oscillation probabilities for v or \bar{v} traversing the Earth – exploit differences in cross section to distinguish

- Effects vary with E_v and L (= zenith angle) due to Earth's density profile
- Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
- Rates of all flavors are affected
- Note: effect of detector resolution not shown here
- Distinct signatures observable in both track (v_μ CC) and cascade (v_e and v_τ CC, v_x NC) channels
 - At higher energies, v_µ CC events distinguishable by the presence of a muon track

Signatures of the Neutrino Mass Hierarchy

 Matter effects alter oscillation probabilities for v or v̄ traversing the Earth – exploit differences in cross section to distinguish

- Effects vary with E_v and L (= zenith angle) due to Earth's density profile
- Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
- Rates of all flavors are affected
- Note: effect of detector resolution not shown here
- Distinct signatures observable in both track (v_{μ} CC) and cascade (v_{e} and v_{τ} CC, v_{x} NC) channels
 - At higher energies, v_μ CC events distinguishable by the presence of a muon track

Signatures of the Neutrino Mass Hierarchy

 Matter effects alter oscillation probabilities for v or v̄ traversing the Earth – exploit differences in cross section to distinguish

- Effects vary with E_v and L (= zenith angle) due to Earth's density profile
- Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
- Rates of all flavors are affected
- Note: effect of detector resolution not shown here
- Distinct signatures observable in both track (v_{μ} CC) and cascade (v_{e} and v_{τ} CC, v_{x} NC) channels
 - At higher energies, v_μ CC events distinguishable by the presence of a muon track

Hierarchy Signature: Observables

arXiv:1401.2046

- Simple visualization of statistical signal, with full detector response included
- Distinctive (and quite different) hierarchy-dependent signatures visible in both the track and cascade channels
 - Parametrized rates, detector resolutions and efficiencies from full detector Monte Carlo used to eliminate statistical fluctuations – statistical distributions checked with MC

Effects of Systematics

- Oscillation physics produces distinctive patterns unlike those of other effects
- Uncertainties in oscillation parameters (mainly θ_{23}) dominate systematics
 - No prior placed on θ_{23} or Δm^2_{atm} fit jointly with NMH
 - θ₁₃ fit with prior, solar parameters and δ_{CP} (=0) held fixed
- Flux: v_e/v_µ ratio (3%), v/v̄ ratio (10%), spectral index (5%), detailed flux uncertainties from Barr et al. 2006*

Туре	3y σ (NH)	3 y σ (IH)
stat only	4.84	4.82
flux only	4.55	4.56
det only	4.06	3.99
θ_{23} only	3.52	3.26
osc only	2.96	2.53
All	2.90	2.51

 Detector: rate/normalization (free), energy scale (10%), detailed cross-section systematics from GENIE* *only with $\Delta \chi^2$ method

Tyce DeYoung

9

Significance vs. Time

- Measurement strongly affected by systematics, but continues to improve with time
- Systematics are constrained by same data set
 - Increased statistics means gradually better control of systematics

Dependence on Mixing Angle

- Most values of θ₂₃
 would give higher
 significance for
 mass ordering
 - Drift toward
 maximal mixing
 since PINGU Lol
 has increased both
 matter effects and
 degeneracies

M.C. Gonzalez-Garcia et al. JHEP 11, 052 (2014)

Oscillation Parameters with PINGU

- Significantly improve IceCube measurements of θ_{23} and Δm^2_{atm}
- Comparable precision to NOvA, T2K
- Complementary to other measurements – interesting tests of standard oscillations
 - Higher energies, joint disappearancetau appearance measurement

IceCube-Gen2

 Planning underway for a multipurpose facility leveraging the experience and investment in IceCube

PINGU will be one component

Outlook

- PINGU has a unique place in the world-wide neutrino program
 - Measurements at a range of higher energies/longer baselines, with high statistics
- Opportunity to discover new physics is greatly enhanced by PINGU's complementarity with other experiments
- PINGU will be a natural part of the IceCube-Gen2 Observatory
 - Closely based on IceCube technology low technical and cost risk
 - PINGU will use the same hardware as high energy extensions of IceCube –
 common design gives flexibility to optimize based on progress of the field
- Focused here on neutrino physics, but also interesting potential in searches for low mass dark matter and other exotica

Backup Slides

Neutrino-Nucleon Interaction Uncertainties

- Comparison of impact of GENIE uncertainties to original ad hoc treatment
- Net impact of full treatment is negligible – oscillation uncertainties dominate
 - Largest impacts from m_A in CCQE and resonance interactions, higher twist parameters in Bodek-Yang DIS model

Estimating Sensitivity to the Mass Hierarchy

- Comparison of two methods of calculating expected significance
- Log-likelihood ratio method
 - Large ensemble of pseudo-data sets, best-fit physics and nuisance parameters determined numerically
 - Build up distribution of test statistic and integrate tail for expected significance
- Penalized $\Delta \chi^2$ (pull) method
 - Asimov data set rather than ensemble
 - Linear error propagation for linear parameters, scan over nonlinear ones
 - Fast: analytic minimization of $\Delta \chi^2$

- example: LLR distributions for PINGU for True NH and True IH
 - 1 year significance: 1.83 (NH) and 1.55 (IH) for the NuFit¹ values of oscillation parameters

Oscillation Parameters with PINGU

after 3 years of livetime, with normal hierarchy correctly identified

Oscillation Parameters with PINGU

after 3 years of livetime, with inverted hierarchy correctly identified

Cost and Schedule

 Primary US funding source for IceCube-Gen2 would be NSF

Total cost comparable to IceCube

 Many items common to PINGU and other elements (drill, engineering, etc.)

 Marginal cost of PINGU within larger IceCube-Gen2 is \$88M, with anticipated non-US contributions of \$25M

 Gen2 conceptual design document and PINGU performance update to be released later this year Cost for PINGU Component

Hardware \$48M

Logistics \$23M

Contingency \$16M

Expected non-US \$25M contributions

Total US Cost

\$63M

(elements do not sum to total due to rounding)

