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DM Detection Basics
• 1.) Rare interactions of DM on earth
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FIG. 5: Spin-independent elastic WIMP-nucleon cross-section
� as function of WIMP mass m�. The new XENON100 limit
at 90% CL, as derived with the Profile Likelihood method
taking into account all relevant systematic uncertainties, is
shown as the thick (blue) line together with the 1� and 2�
sensitivity of this run (shaded blue band). The limits from
XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg � days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.
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DM Detection Basics
• 2.) Rare annihilations
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FIG. 8: The spectrum of the dark matter component derived in our Galactic Center analysis, for a template corresponding to an
NFW halo profile with an inner slope of � = 1.2 (left) or 1.3 (right), normalized to the flux at an angle of 5� from the Galactic
Center. We caution that significant and di�cult to estimate systematic uncertainties exist in this determination, especially at
energies below ⇠1 GeV. Shown for comparison (solid line) is the spectrum predicted from a 35.25 GeV dark matter particle
annihilating to bb̄ with a cross section of �v = 1.21⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢

local

]2 (left) or �v = 0.56⇥ 10�26 cm3/s
⇥ [(0.4GeV/cm3)/⇢

local

]2 (right). The dot-dash and dotted curves include an estimated contribution from bremsstrahlung, as
shown in the right frame of Fig. 2.

FIG. 9: The change in TS for the dark matter template as a
function of the inner slope of the dark matter halo profile, �,
as found in our Galactic Center likelihood analysis. All values
are relative to the result for the best-fit (highest TS) template,
and positive values thus indicate a reduction in TS. The best-
fit value is very similar to that found in our analysis of the
larger Inner Galaxy region (in the default ROI), favoring � ⇠
1.17 (compared to � ' 1.18 in the Inner Galaxy analysis).

 = 2� � 7� and
p
TS = 10 � 25, or  < 2� and any

TS), we adopt the best-fit spectral shape as presented in
the 2FGL catalog, but allow the overall normalization to
float. We additionally allow the spectrum and normal-
ization of the two new sources from Ref. [47], the 20 cm
template, and the extended sources W28 and W30 [46]
to float. We fix the emission from all other sources to the

best-fit 2FGL values. For the Galactic di↵use emission,
we adopt the model gal 2yearp7v6 v0. Although an up-
dated Galactic di↵use model has recently been released
by the Fermi Collaboration, that model includes addi-
tional empirically fitted features at scales greater than 2�,
and therefore is not recommended for studies of extended
gamma-ray emission. For the isotropic component, we
adopt the model of Ref. [48]. We allow the overall nor-
malization of the Galactic di↵use and isotropic emission
to freely vary. In our fits, we found that the isotropic
component prefers a normalization that is considerably
brighter than the extragalactic gamma-ray background.
In order to account for this additional isotropic emission
in our region of interest, we attempted simulations in
which we allowed the spectrum of the isotropic compo-
nent to vary, but found this to have a negligible impact
on the fit.

In addition to these astrophysical components, we in-
clude a spatially extended model in our fits motivated by
the possibility of annihilating dark matter. The morphol-
ogy of this component is again taken to follow the line-of-
sight integral of the square of the dark matter density, as
described in Sec. II. We adopt a generalized NFW profile
centered around the location of Sgr A⇤ (b = �0.04608�,
l = �0.05578� [49]), and allow the inner slope (�) and
overall normalization (set by the annihilation cross sec-
tion) to freely float.

In Figs. 8 and 9, we show the main results of our Galac-
tic Center likelihood analysis. In Fig. 9, we plot the
change of the log-likelihood of our fit as a function of the
inner slope of the halo profile, �. For our best-fit value
of � = 1.17, the inclusion of the dark matter component
can improve the overall fit with TS ' 300, correspond-
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FIG. 1. Constraints on the DM annihilation cross section at 95% CL for the bb̄ (left) and ⌧+⌧� (right) channels derived from
a combined analysis of 15 dSphs. Bands for the expected sensitivity are calculated by repeating the same analysis on 300
randomly selected sets of high-Galactic-latitude blank fields in the LAT data. The dashed line shows the median expected
sensitivity while the bands represent the 68% and 95% quantiles. For each set of random locations, nominal J-factors are
randomized in accord with their measurement uncertainties. The solid blue curve shows the limits derived from a previous
analysis of four years of Pass 7 Reprocessed data and the same sample of 15 dSphs [13]. The dashed gray curve in this and
subsequent figures corresponds to the thermal relic cross section from Steigman et al. [5].

FIG. 2. Comparison of constraints on the DM annihilation cross section for the bb̄ (left) and ⌧+⌧� (right) channels from this
work with previously published constraints from LAT analysis of the Milky Way halo (3� limit) [33], 112 hours of observations
of the Galactic Center with H.E.S.S. [34], and 157.9 hours of observations of Segue 1 with MAGIC [35]. Closed contours and
the marker with error bars show the best-fit cross section and mass from several interpretations of the Galactic center excess
[16–19].

DM distribution can significantly enlarge the best-fit re-
gions of h�vi, channel, and mDM [36].

In conclusion, we present a combined analysis of 15
Milky Way dSphs using a new and improved LAT data
set processed with the Pass 8 event-level analysis. We ex-
clude the thermal relic annihilation cross section (⇠ 2.2⇥
10�26 cm3 s�1) for WIMPs with mDM

<⇠ 100 GeV annihi-
lating through the quark and ⌧ -lepton channels. Our
results also constrain DM particles with mDM above
100 GeV surpassing the best limits from Imaging Atmo-
spheric Cherenkov Telescopes for masses up to 1 TeV.
These constraints include the statistical uncertainty on
the DM content of the dSphs. The future sensitivity to

DM annihilation in dSphs will benefit from additional
LAT data taking and the discovery of new dSphs with
upcoming optical surveys such as the Dark Energy Sur-
vey [37] and the Large Synoptic Survey Telescope [38].
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• 3.) Direct production



Aimed for WIMP
• Energy density set by annihilations

• Macroscopic quantity (energy density) 
linked to microscopic quantity (cross-
section)

�ann ' 3⇥ 10�26 cm3/s ⇠ g4wk

4⇡(1 TeV)2
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

Snowmass 1310.8327

Harsh experimental scrutiny
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

Sub-Weakly Interacting 
Scattering through the Z boson: ruled out

Next important benchmark:
Scattering through the Higgs

�n ⇠ 10�39 cm2

�n � 10�45�46 cm2



A Tale of (two)Higgs Scattering

2

fp
u = 0.020, fp

d = 0.026, fp
s = 0.118, fn

u = 0.014, fn
d =

0.036, fn
s = 0.118 [17]. Note the value of the strange quark

content of the nucleon has a large effect on the cross section.
For example, taking the value of the strange quark content
as in [18], as motivated by recent lattice determinations, the
scattering cross sections become smaller by a factor of 2.

The neutralino masses and mixings depend on tan� =

vu/vd, µ, and the soft gaugino masses M1 and M2. The
scattering cross section is a function of the bino, wino and
Higgsino fractions of the neutralino, decomposed as �0

=

ZB
˜B + ZW

˜W + Zd
˜Hd + Zu

˜Hu. The masses of the lightest
CP even Higgs bosons, mh and mH , and the coupling of the
Higgs to the quarks, as determined by tan� and ↵, the Higgs
mixing angle, are also important. Higgsino fractions are found
by diagonalizing the neutralino mass matrix. For reference,
the (tree level) CP even Higgs masses are given through the
relations to the CP odd Higgs mass mA:

m2
h,H =

1

2

�
m2

A +m2
Z

⌥
q
(m2

A �m2
Z)

2
+ 4m2

Zm
2
A sin

2
2�

◆

m2
H± = m2

A +m2
W . (3)

At tree level, relevant parameters for the LSP and Higgs
sector phenomenology are tan�, M1, µ, MA, M2. Tak-
ing loop corrections into account, At and sfermion masses
also enter. We use Pythia 6.4 [19] to calculate spectra and
branching ratios where necessary. For large tan� and light
Higgs region, we find the scattering cross section

�n ⇡ 8.3⇥ 10

�42 cm2

✓
Zd

0.4

◆2 ✓
tan�

30

◆2 ✓
100 GeV

mH

◆4

⇥ 1

(1 +�mb)
2
, (4)

where we have taken the expression from [17] and added im-
portant corrections from the shifts in the b mass from super-
partner loops, which can be O(1) at large tan�[20]. These
modify the Yukawa coupling as yb ! yb(1 + �mb)

�1. We
quantify the exact size of these corrections below. At large
tan�, the cross section Eq. (4) agrees numerically with Mi-
crOMEGAs [21, 22] within a few percent. At somewhat
smaller tan� (as will be preferred by B decays, see below),
this formula is good to 10%. We see that CoGeNT is push-
ing the limits of the MSSM. To obtain a large enough scatter-
ing cross section we require a light Higgs, a substantial Hig-
gsino fraction of the lightest neutralino, and large tan� to en-
hance the couplings of the Higgs to the nucleon. The lighter
Higgs H is mostly a down type, and is nearly degenerate with
the pseudoscalar Higgs A, as can be seen from Eq. (3). The
charged Higgs also is light. While the near exact degeneracy
of the A and the lighter H is modified at the loop level, the
correction is typically small – in a numerical scan, covering
the region 350 GeV < Mf̃ < 2 TeV, |A| <2 TeV, M3 < 2
TeV, |µ| <300 GeV, but specializing to 20 < tan� < 30,

we find a maximum correction to the degeneracy no larger
than 5%. Similarly, the tree level relation between the pseu-
doscalar and charged Higgs mass is a good approximation,
with a maximum correction of 5%. It is often much smaller.

Since the Higgsino fraction of the neutralino should be
large to maximize the cross section, constraints from the in-
visible Z width are important. We impose the 2� constraint,
�(Z ! �0�0

) . 3 MeV [23]:

�(Z ! �0�0
) =

g2

4⇡

(Z2
u � Z2

d)
2

24c2w
MZ

"
1�

✓
2m�0

mZ

◆2
#3/2

.

(5)
where cw is the cosine of the weak mixing angle. This im-
plies a constraint, |Z2

u � Z2
d | . 0.13. While the scattering

cross section is not directly proportional to this combination,
when combined with the structure of the neutralino mass ma-
trix, it effectively implies a limit on Z2

d of 0.13. Cancellation
between Zu and Zd, which could allow Zd to be larger and
consistent with this constraint, occurs for small tan�. For
M1 ⌧ MZ ,M2, the Zd bound implies |µ| >⇠ 108 GeV.

Because the Higgs parameters are well-specified (low
mA0 , mH0 , mH+ and large tan�), it is possible to identify
several constraints. See [24] for a recent summary of similar
issues. Both direct production of the Higgs bosons and rare
decays are relevant.

First, the lightness of the charged Higgs opens the channel
t ! H+b. At tree level, and for moderate ( >⇠ 15) tan�, to
good approximation, the width is

�

tree
(t ! bH+

) =

g2mt

64⇡M2
W

✓
1� m2

H+

m2
t

◆2

m2
b tan

2 �,

(6)
where mb should be evaluated at the top mass, mb(mt) ⇡ 2.9
GeV. The corrections to the b-quark mass, �mb, change the
effective coupling of the charged Higgs (see e.g. [25]):

�

eff
(t ! bH+

) =

1

(1 +�mb)
2
�

tree
(t ! bH+

), (7)

We now quantify the size of the shift [20]:

�mb = (✏0 + y2t ✏Y ) tan�, (8)

with

✏0 =

2↵s

3⇡
M3µC0(m

2
b̃1
,m2

b̃2
,M2

3 ) (9)

✏Y =

1

16⇡2
AtµC0(m

2
t̃1
,m2

t̃2
, µ2

), (10)

where

C0(x, y, z) =
y log(y/x)

(x� y)(z � y)
+

z log(z/x)

(x� z)(y � z)
. (11)

It is possible to get good estimates for the experimentally
allowed ranges of ✏Y and ✏0. The limits from CDF, BR(Bs !

q q

H, h

χ χ

q~

q q

χ χ

Figure 44: Tree level Feynman diagrams for neutralino-quark scalar (spin-independent)
elastic scattering. From Ref. [319].

C Elastic Scattering Processes

C.1 Scalar Interactions

Consider a WIMP with scalar interactions with quarks given by

Lscalar = aqχ̄χq̄q, (197)

where aq is the WIMP-quark coupling. Then the scattering cross section for
the WIMP off of a proton or neutron is given by

σscalar =

∫ 4m2
rv2

0

dσ(v = 0)

d|v⃗|2
=

4m2
r

π
f2

p,n, (198)

where v is the relative velocity of the WIMP, mr is the reduced mass of the
nucleon (mr ≃ mp,n for WIMPs heavier than ∼ 10 GeV) and fp,n is the WIMP
coupling to protons or neutrons, given by

fp,n =
∑

q=u,d,s

f (p,n)
Tq aq

mp,n

mq
+

2

27
f (p,n)

TG

∑

q=c,b,t

aq
mp,n

mq
, (199)

where f (p)
Tu = 0.020 ± 0.004, f (p)

Td = 0.026 ± 0.005, f (p)
Ts = 0.118 ± 0.062, f (n)

Tu =

0.014 ± 0.003, f (n)
Td = 0.036 ± 0.008 and f (n)

Ts = 0.118 ± 0.062 [209]. f (p,n)
TG is

related to these values by

f (p,n)
TG = 1 −

∑

q=u,d,s

f (p,n)
Tq . (200)

The term in Eq. 199 which includes f (p,n)
TG results from the coupling of the WIMP

to gluons in the target nuclei through a heavy quark loop. The couplings of
squarks and Higgs bosons to heavy quarks leads to a loop level coupling of the
WIMP to gluons [276, 61, 323]. Such diagrams are shown in Fig. 45.

To attain the scalar cross section for a WIMP scattering off of a target
nucleus, one should sum over the protons and neutrons in the target:

σ =
4m2

r

π

(
Zfp + (A − Z)fn

)2

, (201)
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

Higgs mediated scattering
MSSM



• Blob closure is deceptive

• MSSM: Bino, Wino, Higgsino

• Pure states do not couple to 
Higgs at tree level 

• Pure wino and Higgsino are 
viable; do not scatter off 
nucleon at tree level

• Indirect detection large for wino

g̃ q

q̃

(a)

W̃ qL, ℓL, H̃u, H̃d

q̃L, ℓ̃L, Hu, Hd

(b)

B̃ q, ℓ, H̃u, H̃d

q̃, ℓ̃, Hu, Hd

(c)

Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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Figure 38: Tree level diagrams for neutralino annihilation into gauge boson pairs.
From Ref. [319].

U =

(
cosφ− − sinφ−
sinφ− cosφ+

)
(181)

and

V =

(
cosφ+ − sinφ+

sinφ+ cosφ−

)
, (182)

where

tan 2φ− = 2
√

2mW
(µ sinβ + M2 cosβ)

(M2
2 − µ2 + 2m2

W cos 2β)
(183)

and

tan 2φ+ = 2
√

2mW
(µ cosβ + M2 sinβ)

(M2
2 − µ2 − 2m2

W cosβ)
. (184)

The amplitude for annihilations to Z0-pairs is similar:

A(χχ→ Z0Z0)v→0 = 4
√

2 βZ
g2

cos2 θW

4∑

n=1

(
O′′L

1,n

)2 1

Pn
. (185)

Here, βZ =
√

1 − m2
Z/m2

χ, and Pn = 1 + (mχn/mχ)2 − (mZ/mχ)2. The sum is

over neutralino states. The coupling O′′L
1,n is given by 1

2 (−N3,1N∗
3,n +N4,1N∗

4,n).
The low velocity annihilation cross section for this mode is then given by

σv(χχ → GG)v→0 =
1

SG

βG

128πm2
χ

|A(χχ → GG)|2, (186)

where G indicates which gauge boson is being considered. SG is a statistical
factor equal to one for W+W− and two for Z0Z0.

It is useful to note that pure-gaugino neutralinos have a no S-wave annihi-
lation amplitude to gauge bosons. Pure-higgsinos or mixed higgsino-gauginos,
however, can annihilate efficiently via these channels, even at low velocities.
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FIG. 2. Left panel: Our NLL+SE cross section for �0�0 annihilation to line photons from �� and �Z, compared to earlier
results. Right panel: current bounds from H.E.S.S and projected reach of 5 hours of CTA observation time, overlaid with our
(and previous) cross section predictions, for an NFW profile.

Treating Sommerfeld e↵ects at tree-level the ratio of cross
sections is given by the Sudakov form factors

�NLL+⇢⇢SE
�+��!X

�tree
�+��!X

= |⌃1|2,
�NLL+⇢⇢SE

�0�0!X

�tree
�+��!X

= |⌃1 � ⌃2|2 . (16)

This nonzero result for �0�0 ! ZZ, Z�, �� at short
distances starts at NLL in |⌃1 � ⌃2|2, and occurs be-
cause there is a Sudakov mixing between the W+W� and
W 3W 3 from soft gauge boson exchange. This is similar
in spirit to the Sommerfeld mixing of the initial states.

In Fig. 1 we plot |⌃1|2 and |⌃1 �⌃2|2 as a function of
m�. To obtain theoretical uncertainty bands we use the
residual scale dependence at LL and NLL obtained by
varying µm� = [m�, 4m�] and µZ = [mZ/2, 2mZ ]. The
one-loop fixed order results of [5] are within our LL un-
certainty band. Our NLL result yields precise theoretical
results for these electroweak corrections. To test our un-
certainties we added non-logarithmic O(↵2) corrections
to C1,2(µm�), of the size found in [5], and noted that the
shift is within our NLL uncertainty bands.

Indirect Detection Phenomenology Combining
Eqs. 8 and 14 with the standard Sommerfeld enhance-
ment (SE) factors s00 and s0±, we can now compute
the total cross section for annihilation to line photons
at NLL+SE and compare to existing limits from indirect
detection. We sum the rates of photon production from
�0�0 ! ��, �Z, as the energy resolution of current in-
struments is typically comparable to or larger than the
spacing between the lines (see e.g. [6] for a discussion).

In Fig. 2 we display our results for the line cross sec-
tions calculated at LL+SE and NLL+SE. Our theoretical
uncertainties are from µm� variation. (The µZ variations
are very similar. Since both cases are dominated by the
variation of the ratio of the high and low scales we do

not add them together.) In the left panel we compare to
earlier cross section calculations, including “Tree-level +
SE” where Sudakov corrections are neglected, the “One-
loop fixed-order” cross section where neither Sommer-
feld or Sudakov e↵ects are resummed (taken from [7]),
and the calculation in [5] where Sommerfeld e↵ects are
resummed but other corrections are at one-loop. At low
masses, our results converge to the known ones (except [5]
which focused on high masses and omits a term that be-
comes leading-order at low masses). At high masses, our
NLL+SE result provides a sharp prediction for the anni-
hilation cross section with ' 5% theoretical uncertainty.

In the right panel of Fig. 2 we compare the NLL cross
section to existing limits from H.E.S.S [23] and projected
ones from CTA. In the latter case we follow the prescrip-
tion of [6], based on [24], and in both cases we assume an
NFW profile with local DM density 0.4 GeV/cm3. We
assume here that the �0 constitutes all the DM due to a
non-thermal history (the limits can be straightforwardly
rescaled if it constitutes a subdominant fraction of the
total DM). For this profile, we see that H.E.S.S already
constrains models of this type for masses below ⇠ 4 TeV,
consistent with the results of [6] (which employed the
tree-level+SE approximation), and that five hours of ob-
servation with CTA could extend this bound to ⇠ 10
TeV. Any constraint on the line cross section should be
viewed as a joint constraint on the fundamental physics
of DM and the distribution of DM in the Milky Way [25].

The method we developed here allows systematically
improvable e↵ective field theory techniques to be applied
to DM, and enabled us to obtain NLL+SE predictions for
the DM annihilation cross section to photon lines. This
enables precision constraints to be placed on DM.

Note added: As our paper was being finalized two pa-
pers appeared [26, 27] which also investigate DM with

Ovanesyan, Slatyer, Stewart

Minimal Supersymmetric Standard Model



• 1-loop direct detection, 
wino and Higgsino

• Bino is hard; even 1-
loop contribution is 
suppressed

• Still, some tuning 
required to remove 
coupling to Higgs
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·
· ⌧a

4
�i⌧a

4

· i⌧a

4
⌧a

4

1

CA� c.c. , Y =

0

B@
0 · ·
· 02

�i12
2

· i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

8 E↵ective Nucleon Coupling
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• Still room for discovery of WIMP, e.g. 
galactic center excess

• Cannot accommodate in minimal SUSY

• LHC and direct detection constraints 
too strong

• Mixing in singlet makes viable

14

FIG. 15: The quality of the fit (�2, over 25-1 degrees-of-freedom) for various annihilating dark matter models to the spectrum
of the anomalous gamma-ray emission from the Inner Galaxy (as shown in the left frame of Fig. 6) as a function of mass,
and marginalized over the value of the annihilation cross section. In the left frame, we show results for dark matter particles
which annihilate uniquely to bb̄, cc̄, ss̄, light quarks (uū and/or dd̄), or ⌧+⌧�. In the right frame, we consider models in which
the dark matter annihilates to a combination of channels, with cross sections proportional to the square of the mass of the
final state particles, the square of the charge of the final state particles, democratically to all kinematically accessible Standard
Model fermions, or 80% to ⌧+⌧� and 20% to bb̄. The best fits are found for dark matter particles with masses in the range of
⇠20-60 GeV and which annihilate mostly to quarks.

FIG. 16: The range of the dark matter mass and annihilation cross section required to fit the gamma-ray spectrum observed
from the Inner Galaxy, for a variety of annihilation channels or combination of channels (see Fig. 15). We show results for our
standard ROI (black) and as fit over the full sky (blue). The observed gamma-ray spectrum is generally best fit by dark matter
particles with a mass of ⇠20-50 GeV and that annihilate to quarks with a cross section of �v ⇠ 10�26 cm3/s. Note that the
cross-section for each model is computed for the best-fit slope � in that ROI and the assumed dark matter densities at 5� from
the Galactic Center (where the signal is normalized) are di↵erent for di↵erent values of �. This is responsible for roughly half
of the variation between the best-fit cross-sections. Figures 19 and 20 show the impact of changing the ROI when holding the
assumed DM density profile constant.

VII. IMPLICATIONS FOR DARK MATTER

In this section, we use the results of the previous sec-
tions to constrain the characteristics of the dark matter
particle species potentially responsible for the observed
gamma-ray excess. We begin by fitting various dark mat-

ter models to the spectrum of the gamma-ray excess as
found in our Inner Galaxy analysis (as shown in the left
frame of Fig. 6). In Fig. 15, we plot the quality of this
fit (�2) as a function of the WIMP mass, for a number
of dark matter annihilation channels (or combination of
channels), marginalized over the value of the annihila-

Daylan et al 1402.6703 9

FIG. 8: The spectrum of the dark matter component derived in our Galactic Center analysis, for a template corresponding to an
NFW halo profile with an inner slope of � = 1.2 (left) or 1.3 (right), normalized to the flux at an angle of 5� from the Galactic
Center. We caution that significant and di�cult to estimate systematic uncertainties exist in this determination, especially at
energies below ⇠1 GeV. Shown for comparison (solid line) is the spectrum predicted from a 35.25 GeV dark matter particle
annihilating to bb̄ with a cross section of �v = 1.21⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢

local

]2 (left) or �v = 0.56⇥ 10�26 cm3/s
⇥ [(0.4GeV/cm3)/⇢

local

]2 (right). The dot-dash and dotted curves include an estimated contribution from bremsstrahlung, as
shown in the right frame of Fig. 2.

FIG. 9: The change in TS for the dark matter template as a
function of the inner slope of the dark matter halo profile, �,
as found in our Galactic Center likelihood analysis. All values
are relative to the result for the best-fit (highest TS) template,
and positive values thus indicate a reduction in TS. The best-
fit value is very similar to that found in our analysis of the
larger Inner Galaxy region (in the default ROI), favoring � ⇠
1.17 (compared to � ' 1.18 in the Inner Galaxy analysis).

 = 2� � 7� and
p
TS = 10 � 25, or  < 2� and any

TS), we adopt the best-fit spectral shape as presented in
the 2FGL catalog, but allow the overall normalization to
float. We additionally allow the spectrum and normal-
ization of the two new sources from Ref. [47], the 20 cm
template, and the extended sources W28 and W30 [46]
to float. We fix the emission from all other sources to the

best-fit 2FGL values. For the Galactic di↵use emission,
we adopt the model gal 2yearp7v6 v0. Although an up-
dated Galactic di↵use model has recently been released
by the Fermi Collaboration, that model includes addi-
tional empirically fitted features at scales greater than 2�,
and therefore is not recommended for studies of extended
gamma-ray emission. For the isotropic component, we
adopt the model of Ref. [48]. We allow the overall nor-
malization of the Galactic di↵use and isotropic emission
to freely vary. In our fits, we found that the isotropic
component prefers a normalization that is considerably
brighter than the extragalactic gamma-ray background.
In order to account for this additional isotropic emission
in our region of interest, we attempted simulations in
which we allowed the spectrum of the isotropic compo-
nent to vary, but found this to have a negligible impact
on the fit.

In addition to these astrophysical components, we in-
clude a spatially extended model in our fits motivated by
the possibility of annihilating dark matter. The morphol-
ogy of this component is again taken to follow the line-of-
sight integral of the square of the dark matter density, as
described in Sec. II. We adopt a generalized NFW profile
centered around the location of Sgr A⇤ (b = �0.04608�,
l = �0.05578� [49]), and allow the inner slope (�) and
overall normalization (set by the annihilation cross sec-
tion) to freely float.

In Figs. 8 and 9, we show the main results of our Galac-
tic Center likelihood analysis. In Fig. 9, we plot the
change of the log-likelihood of our fit as a function of the
inner slope of the halo profile, �. For our best-fit value
of � = 1.17, the inclusion of the dark matter component
can improve the overall fit with TS ' 300, correspond-



• However, recently shown to be more 
consistent with unresolved point 
sources

• Emphasizes that it will be much easier 
to establish bounds than signal from 
indirect detection

4

FIG. 3: Posteriors for the fractions of the total flux within 10� of the GC with |b| � 2� arising from the NFW-distributed
PS and NFW-distributed DM components, with 3FGL sources unmasked (left) and masked (right) in the fit. Insets show the
results of including only a DM template in the fit; in the absence of a PS template, the DM template can absorb the entirety of
the flux. Dashed vertical lines indicate the 16th, 50th, and 84th percentiles. The intensity of the di↵use emission is consistent
between the NPTF and standard template analyses.

the excess within 10� of the GC with |b| � 2� may be
explained by a population of 62+21

�19 unresolved PSs, with

flux above 1.69+0.38
�0.31 ⇥ 10�10 photons/cm2

/s. The entire

excess within this region could be explained by 203+109
�68

PSs, although this estimate relies on extrapolating the
source-count function to very low flux, where systematic
uncertainties are large. Detecting members of this PS
population, which appears to lie just below the current
Fermi PS-detection threshold, would be convincing evi-
dence in favor of the PS explanation of the ⇠GeV excess.
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• Well-defined WIMP-hunting program 
that will (severely) narrow but not 
eliminate well-motivated candidates

• Program has momentum, is funded, 
and is being pushed through

• But what if we aren’t looking in the 
right place?
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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• Two reasons to move beyond WIMP:

• Simple, “natural” models reside 
elsewhere

• Experiments are pointing us in that 
direction10 Direct Detection Program Roadmap 39
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for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
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band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
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with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

Ex: Asymmetric DM

Idea of DM particle-anti-particle asymmetry is old
What’s new?

Particle-anti-particle asymmetry



Hidden Asymmetric DM
• Higher dimension operator coupling
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• Secluding DM = model flexibility

• Secluding DM can be “natural”

V γ, Z

ψ

ψ

SM

ψ

ψ V

V

Figure 2: WIMP annihilation for: (A) mψ < mV on the left; and (B) mψ > mV on the right – the secluded
regime in which the annihilation may proceed via two metastable on-shell V ’s, which ultimately decay to
SM states.

energy scale for the problem, in this limit one may substitute ∂µBµν by the total hypercharge
current and neglect the influence of SM threshold effects. For small mixing, characterized
by β ≪ 1 where

β ≡

(

κe′

e cos θW

)2

, (4)

the resulting annihilation cross section for nonrelativistic WIMPs takes the following form,

⟨σannv⟩mψ≫mSM
≈ 1.3 pbn × β

(

500 GeV

mψ

)2

×

(

4m2
ψ

4m2
ψ − m2

V

)2

, (5)

proceeding in the l = 0 channel with an obvious pole at mψ = mV /2, in the vicinity of
which a more accurate treatment of the thermal average is required. The result depends
on the mixing parameter β and the sum of squares of the hypercharges for the SM fields,
∑

fermions Y 2
f + 1

2

∑

bosons Y 2
b = 10 + 0.25. Note that in the opposite limit, mb ≪ mψ ≪ mZ ,

the total cross section is instead proportional to the sum of squares of all the electric charges
of SM fermions with the exception of the t-quark.

This cross-section needs to be compared with the constraint on the dark matter energy
density provided by recent cosmological observations:

2 ×
109(mψ/Tf)

√

g∗(Tf ) × GeV × MPl⟨σv⟩
≤ ΩDMh2 ≃ 0.1, (6)

where Tf is the freeze-out temperature (it suffices here to take mψ/Tf ≃ 20), g∗ the effective
number of degrees of freedom at freeze-out, and the extra factor of two relative to the
standard formula (see e.g. [16]) is because annihilation can occur only between particles and
anti-particles.

In Fig. 3, we exhibit the abundance constraint on the β − mψ plane for a specific choice
of mediator mass, mV = 400 GeV, by saturating the inequality (6). This value of mV

lies outside the direct reach of LEP or the Tevatron but is certainly within range for the
LHC. One can clearly see the enhancement of the annihilation cross section in the vicinity
of the two vector resonance poles, Z and V , where the mixing parameter β is allowed to be
significantly smaller than 1.

This model is subject to various constraints from direct searches and collider physics.
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Figure 2: WIMP annihilation for: (A) mψ < mV on the left; and (B) mψ > mV on the right – the secluded
regime in which the annihilation may proceed via two metastable on-shell V ’s, which ultimately decay to
SM states.

energy scale for the problem, in this limit one may substitute ∂µBµν by the total hypercharge
current and neglect the influence of SM threshold effects. For small mixing, characterized
by β ≪ 1 where

β ≡

(

κe′

e cos θW

)2

, (4)

the resulting annihilation cross section for nonrelativistic WIMPs takes the following form,
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proceeding in the l = 0 channel with an obvious pole at mψ = mV /2, in the vicinity of
which a more accurate treatment of the thermal average is required. The result depends
on the mixing parameter β and the sum of squares of the hypercharges for the SM fields,
∑

fermions Y 2
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∑

bosons Y 2
b = 10 + 0.25. Note that in the opposite limit, mb ≪ mψ ≪ mZ ,

the total cross section is instead proportional to the sum of squares of all the electric charges
of SM fermions with the exception of the t-quark.

This cross-section needs to be compared with the constraint on the dark matter energy
density provided by recent cosmological observations:

2 ×
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g∗(Tf ) × GeV × MPl⟨σv⟩
≤ ΩDMh2 ≃ 0.1, (6)

where Tf is the freeze-out temperature (it suffices here to take mψ/Tf ≃ 20), g∗ the effective
number of degrees of freedom at freeze-out, and the extra factor of two relative to the
standard formula (see e.g. [16]) is because annihilation can occur only between particles and
anti-particles.

In Fig. 3, we exhibit the abundance constraint on the β − mψ plane for a specific choice
of mediator mass, mV = 400 GeV, by saturating the inequality (6). This value of mV

lies outside the direct reach of LEP or the Tevatron but is certainly within range for the
LHC. One can clearly see the enhancement of the annihilation cross section in the vicinity
of the two vector resonance poles, Z and V , where the mixing parameter β is allowed to be
significantly smaller than 1.

This model is subject to various constraints from direct searches and collider physics.
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• Presence of dark force mediates DD
3

�1

�1

�2

�, Z

�, Z

�2

�1

�, Z

f

¯f

FIG. 2: Magnetic dipolar DM �
1

annihilates to ��, �Z,ZZ (Left), while ff̄ occurs by coannihilation only with �
2

(Right).

• In the early Universe, the thermally-averaged coannihilation cross section is suppressed by a Boltzmann factor
exp(��m/T ). For �m ⇠ T

f

, the coannihilation rate becomes moderately suppressed, requiring larger couplings to
reproduce the correct thermal relic density.

• In the present Universe, �2 is not populated, and therefore �1�2 ! f ¯f does not contribute to any indirect detection
signals. However, direct annihilation �1�1 ! �� can occur, and the rate can be enhanced due to the large couplings
required for thermal freeze-out.

Ultimately, within a given model, there will exist a preferred parameter region for �m and couplings that can simultaneously
explain the relic DM density and the observed � signal. In this section, we first discuss some preliminaries for computing the
DM relic density, closely following Ref. [53], and then we consider specific models in parts A and B.

Similar to single species freeze-out, the relic DM abundance for a general coannihilation scenario is computed by solving a
Boltzmann equation

ṅ
�

+ 3Hn
�

= �h�e↵vi
�
n2
�

� (neq
�

)

2
�

(2)

where n
�

⌘ P
i

n
�i is the total �

i

density. In writing Eq. (2) in terms of only n
�

, we assume the individual densities n
�i are in

chemical equilibrium due to rapid �
i

f $ �
j

f and �
i

$ �
j

f ¯f processes, such that

n
�i

n
�

⇡ neq
�i

neq
�

=

g
i

(1 +�

i

)

3/2
exp(�x�

i

)

ge↵
⌘ r

i

. (3)

We have defined x ⌘ m1/T , �
i

⌘ (m
i

�m1)/m1, and ge↵ ⌘ P
i

g
i

(1 +�

i

)

3/2
exp(�x�

i

), with g
i

degrees of freedom for
�
i

. The thermally-averaged effective cross section is h�e↵vi ⌘ P
i,j

r
i

r
j

h�
ij

vi, where �
ij

is �
i

�
j

annihilation cross section
and its thermal average is

h�
ij

vi = x3/2

2

p
⇡

Z 1

0
dv v2 (�

ij

v) e�v

2
x/4 . (4)

The DM relic density today is given by

⌦dmh
2
=

1.07⇥ 10

9
GeV

�1

g1/2⇤ mPl

hR1
xf

x�2 h�e↵vi dx
i , (5)

where mPl ⇡ 1.22 ⇥ 10

19
GeV is the Planck mass and g⇤ is the number of degrees of freedom in the thermal bath during

freeze-out. The freeze-out temperature T
f

= m1/xf

is obtained by solving x
f

= ln

�
0.038 ge↵m1mPl h�e↵vi /pg⇤xf

�
, which

can be done iteratively. Alternately, one can directly solve Eq. (2) numerically; for the cases we consider below, we find that the
agreement with Eq. (5) is better than ⇠ 1� 3% depending on the mass splitting.

Now, we discuss two models which give rise to the Fermi line signal and a correct relic density with the coannihilation effect
in the early Universe.2

2 To be clear, our models rely on the mass splitting �m to suppress h�
e↵

vi, which is dominated by large �
1

�
2

and �
2

�
2

annihilation cross sections. This is
distinct from models where �

1

�
1

annihilation is itself too large, and h�
e↵

vi can be suppressed by 1/g
e↵

by having a “parasitic” species �
2

that does not
annihilate strongly (see, e.g., [54, 55]).

�

�

A’
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e, n
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

ADM model with dark force
Cohen, Phalen, Pierce, KZ

1005.1655



Theorists Alight
• with new experiments

• What else can we design?

sions. Constraints from past experiments and from neu-
trino emission by SN 1987A are presented in Section III.
In Section IV, we describe the five new experimental sce-
narios and estimate the limiting backgrounds. We con-
clude in Section V with a summary of the prospects for
new experiments. More detailed formulas, which we use
to calculate our expected search reaches, and a more de-
tailed discussion of some of the backgrounds, are given
in Appendices A, B, and C .

II. THE PHYSICS OF NEW U(1) VECTORS IN
FIXED TARGET COLLISIONS

A. Theoretical Preliminaries

Consider the Lagrangian

L = L
SM

+ ✏

Y

F

Y,µ⌫

F

0
µ⌫

+
1
4
F

0,µ⌫

F

0
µ⌫

+ m

2

A

0A
0µ

A

0
µ

, (3)

where L
SM

is the Standard Model Lagrangian, F

0
µ⌫

=
@

[µ

A

0
⌫]

, and A

0 is the gauge field of a massive dark U(1)0

gauge group [1]. The second term in (3) is the kinetic
mixing operator, and ✏ ⇠ 10�8 � 10�2 is naturally gen-
erated by loops at any mass scale of heavy fields charged
under both U(1)0 and U(1)

Y

; the lower end of this range
is obtained if one or both U(1)’s are contained in grand-
unified (GUT) groups, since then ✏ is only generated by
two-or three-loop GUT-breaking e↵ects.

A simple way of analyzing the low-energy e↵ects of the
A

0 is to treat kinetic mixing as an insertion of p

2

g

µ⌫

�p

µ

p

⌫

in Feynman diagrams, making it clear that the A

0 couples
to the electromagnetic current of the Standard Model
through the photon. This picture also clarifies, for ex-
ample, that new interactions induced by kinetic mixing
must involve a massive A

0 propagator, and that e↵ects
of mixing with the Z-boson are further suppressed by
1/m

2

Z

. Equivalently, one can redefine the photon field
A

µ ! A

µ+✏A

0µ as in [37], which removes the kinetic mix-
ing term and generates a coupling eA

µ

J

µ

EM

� ✏eA

0
µ

J

µ

EM

of the new gauge boson to electrically charged particles
(here ✏ ⌘ ✏

Y

cos ✓

W

). Note that this does not induce
electromagnetic millicharges for particles charged under
the A

0. The parameters of concern in this paper are ✏

and m

A

0 .
We now explain the orange stripe in Figure 1 — see

[3, 4, 5] for more details. In a supersymmetric theory,
the kinetic mixing operator induces a mixing between
the D-terms associated with U(1)0 and U(1)

Y

. The hy-
percharge D-term gets a vacuum expectation value from
electroweak symmetry breaking and induces a weak-scale
e↵ective Fayet-Iliopoulos term for U(1)0. Consequently,
the Standard Model vacuum can break the U(1)0 in the
presence of light U(1)0-charged degrees of freedom, giving
the A

0 a mass,

m

A

0 ⇠ p✏g

D

p
g

Y

m

W

g

2

, (4)

e�e�

Z

A0

�

FIG. 2: A

0 production by bremsstrahlung o↵ an incoming
electron scattering o↵ protons in a target with atomic number
Z.

`+

`�

`+

`�

e�

Z Z

e�

(a) (b)

FIG. 3: (a) �

⇤ and (b) Bethe-Heitler trident reactions that
comprise the primary QED background to A

0 ! `

+
`

� search
channels.

where g

D

, g

Y

, and g

2

are the the U(1)0, U(1)
Y

, and
Standard Model SU(2)

L

gauge couplings, respectively,
and m

W

is the W-boson mass. Equation (4) relates
✏ and m

A

0 as indicated by the orange stripe in Figure
1 for g

D

⇠ 0.1 � 1. This region is not only theoret-
ically appealing, but also roughly corresponds to the
region in which the annual modulation signal observed
by DAMA/LIBRA can be explained by dark matter,
charged under the U(1)0, scattering inelastically o↵ nuclei
through A

0 exchange. We therefore include these lines for
reference in our plots.

B. A

0 Production in Fixed-Target Collisions

A

0 particles are generated in electron collisions on a
fixed target by a process analogous to ordinary pho-
ton bremsstrahlung, see Figure 2. This can be reli-
ably estimated in the Weizsäcker-Williams approxima-
tion (see Appendix A for more details) [38, 39, 40].
When the incoming electron has energy E

0

, the di↵er-
ential cross-section to produce an A

0 of mass m

A

0 with
energy E

A

0 ⌘ xE

0

is

d�

dxd cos ✓

A

0
⇡ 8Z

2

↵

3

✏

2

E

2

0

x

U

2

Log

⇥

(1� x +

x

2

2
)� x(1� x)m2

A

0

�
E

2

0

x ✓

2

A

0

�

U

2

�
(5)

where Z is the atomic number of the target atoms,
↵ ' 1/137, ✓

A

0 is the angle in the lab frame between the
emitted A

0 and the incoming electron, the Log (⇠ 5� 10

3
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FIG. 1: Left: Existing constraints on an A

0. Shown are constraints from electron and muon anomalous magnetic moment
measurements, ae and aµ, the BaBar search for ⌥(3S) ! �µ

+
µ

�, three beam dump experiments, E137, E141, and E774,
and supernova cooling (SN). These constraints are discussed further in Section III. Right: Existing constraints are shown in
gray, while the various lines — light green (upper) solid, red short-dashed, purple dotted, blue long-dashed, and dark green
(lower) solid — show estimates of the regions that can be explored with the experimental scenarios discussed in Section IVA–
IVE, respectively. The discussion in IV focuses on the five points labeled “A” through “E”. The orange stripe denotes the
“D-term” region introduced in section IIA, in which simple models of dark matter interacting with the A

0 can explain the
annual modulation signal reported by DAMA/LIBRA. Along the thin black line, the A

0 proper lifetime c⌧ = 80µm, which is
approximately the ⌧ proper lifetime.

energy e

+

e

� colliders are a powerful laboratory for the
study of an A

0 with ✏ & 10�4 and mass above ⇠ 200
MeV, particularly in sectors with multiple light states
[32, 33, 34, 35, 36]. Their reach in ✏ is limited by lu-
minosity and irreducible backgrounds. However, an A

0

can also be produced through bremsstrahlung o↵ an elec-
tron beam incident on a fixed target [34]. This approach
has several virtues over colliding-beam searches: much
larger luminosities, of O(1 ab�1

/day) can be achieved,
scattering cross-sections are enhanced by nuclear charge
coherence, and the resulting boosted final states can be
observed with compact special-purpose detectors.

Past electron “beam-dump” experiments, in which a
detector looks for decay products of rare penetrating par-
ticles behind a stopped electron beam, constrain & 10
cm vertex displacements and ✏ & 10�7. The thick shield
needed to stop beam products limits these experiments to
long decay lengths, so thinner targets are needed to probe
shorter displacements (larger ✏ and m

A

0). However, beam
products easily escape thin targets and constitute a chal-
lenging background in downstream detectors.

The five benchmark points labeled “A” through “E”
in Figure 1 (right) require di↵erent approaches to these
challenges, discussed in Section IV. We have estimated
the reach of each scenario, summarized in Figure 1
(right), in the context of electron beams with 1–6 GeV
energies, nA–µA average beam currents, and run times
⇠ 106 s. Such beams can be found for example at the

Thomas Je↵erson National Accelerator Facility (JLab),
the SLAC National Accelerator Laboratory, the electron
accelerator ELSA, and the Mainzer Mikrotron (MAMI).

The scenarios for points A and E use 100 MeV–1 GeV
electron beam dumps, with more complete event recon-
struction or higher-current beams than previous dump
experiments. Low-mass, high-✏ regions (e.g. B and C)
produce boosted A

0 and forward decay products with
mm–cm displaced vertices. Our approaches exploit very
forward silicon-strip tracking to identify these vertices,
while maintaining reasonable occupancy — a limiting
factor. At still higher ✏, no displaced vertices are re-
solvable and one must take full advantage of the kine-
matic properties of the signal and background processes,
including the recoiling electron, using either the forward
geometries of B and C or a wider-angle spectrometer (e.g.
for point D). Spectrometers operating at various labora-
tories appear capable of probing this final region.

We focus on the case where the A

0 decays directly to
Standard Model fermions, but the past experiments and
proposed scenarios are also sensitive (with di↵erent ex-
clusions) if the A

0 decays to lighter U(1)0-charged scalars,
and to direct production of axion-like states.

Outline

In Section II, we summarize the properties of A

0 pro-
duction through bremsstrahlung in fixed-target colli-

2
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Yes, it is possible to go as low as ~1 MeV!
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• Kinematics and experimental viability

• Elastic scattering

• 1 MeV DM corresponds to 1 eV of 
energy deposit on electrons

• 30 MeV DM corresponds to 1 eV of 
energy deposit on nucleons

• semi-conductors have ~eV band gaps

ED ' q2/(2me,N ) q ⇠ mXv

v ⇠ 10�3



• CDMS -> SuperCDMS 
Germanium and Silicon

• CDMS: 5 keV nuclear 
recoil threshold

• Technology optimized 
for 10 GeV and heavier 

• Detectors being 
redesigned to reach 
100’s of eV thresholds

Semi-conductor Detectors

Search for DM-electron scattering

• Noble liquids (xenon, argon, helium)!

• Semiconductor targets (germanium, silicon)!

     threshold ~ 10 eV

     threshold ~ 1 eV (band gap)
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• Electron scattering
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FIG. 2: The cross section exclusion reach (left axis) at 95% confidence level for 1 kg·year of exposure, assuming only the
irreducible neutrino background (note that additional unknown backgrounds are likely to exist, which would weaken the
sensitivity — see Fig. 4). This corresponds to the cross section for which 3.6 events are expected after 1 kg·year. The right axis
shows the event rate assuming a cross section of �e = 10�37 cm2. Results are shown for xenon (blue), argon (red), germanium
(brown), and helium (green) targets. Left: Models with no DM form-factor. The green shaded area indicates the allowed
region for U(1)D (hidden photon) models with mAD

>⇠ 10 MeV. The orange shaded area is the region in which a particular
model of “MeV” DM can explain the INTEGRAL 511 keV �-rays from the galactic bulge [9]. Right: Models with a very
light scalar or vector mediator, for which FDM = ↵2m2

e/q
2. The blue region indicates the allowed parameter space for a hidden

U(1)D model with a very light (⌧ keV) hidden photon. The darker blue band corresponds to the “Freeze-In” region. For
illustration, constant gD contours are shown with dashed lines, assuming mAD = 8 MeV and " = 2 ⇥ 10�3 (left plot) and
mAD = 1 meV and " = 3⇥ 10�6 (right plot). For more details see the text and the Appendix.

existing detectors cannot reconstruct the z-position of
very low energy events.

Secondary events. The primary signal of a higher-
energy background may be accompanied by a num-
ber of very low energy events. This e↵ect was ob-
served for single-electron events in ZEPLIN-II [30] and
Xenon10 [31, 32]. One possible explanation is the sec-
ondary ionization of impurities (e.g. oxygen) or of xenon
atoms by primary scintillation photons. Such a back-
ground could be reduced by vetoing events occurring too
close in time to a large event. Another possible explana-
tion is that electrons captured by impurities may eventu-
ally be released and detected a significant time after the
primary event that produced them. The long lifetime of
ionized impurities (e.g. an O�

2

ion takes several seconds
to drift to the anode in ZEPLIN-II) may limit the e↵ec-
tiveness of a timing veto, and in this case improvements
in purification would be important.

Neutrons. Current direct detection experiments are ef-
fective at shielding against neutron backgrounds. Modi-
fication of existing designs to minimize the very low en-
ergy neutron scattering relevant for LDM detection could
yield further improvements.

Neutrinos. Neutrino scattering with electrons and nu-
clei generates a small but irreducible background. As
with WIMP searches, this may set the ultimate limit to
the reach of LDM direct detection experiments. The neu-
trino background is overwhelmingly dominated by solar
neutrinos, which are theoretically well understood but
only partially measured. Solar neutrinos have typical en-

ergies between 100 keV and 20 MeV and scatter with a
rate given by:

dR

dE
R

=

Z 1

E

min
⌫

dE
⌫

d�
⌫

dE
⌫

d�

dE
R

, (14)

where Emin

⌫

' 1

2

(E
R

+
p
E2

R

+ 2E
R

m) is the minimal
neutrino energy required to recoil a particle of mass m
with energy E

R

, d�/dE
R

is the scattering cross section,
and d�

⌫

/dE
⌫

is the solar neutrino flux [44–46]. We cal-
culate the di↵erential rate for di↵erent materials in Fig. 1
(see also e.g. [47–49]). Electron recoils have energies well
above the expected DM signal and should be easily dis-
tinguished. Recoiling nuclei, on the other hand, have
energies typically below a keV. The e�ciency in convert-
ing this energy into ionized electrons is unknown at these
low energies, but it is expected to be very small [28, 32].
Therefore the neutrino-induced background, for events
in which only one or a few electrons are seen, is at most
O(1) per kg·year and probably much lower.

RESULTS

We now present expected rates of ionization by DM–
electron scattering in LDM direct detection experiments.
A systematic study of possible target materials is beyond
the scope of this letter, but we present illustrative results
for xenon, argon, helium, and germanium. Noble gases
and semiconductors, particularly xenon and germanium,

Essig, Mardon, Volansky 1108.5383

Proof-of-principle for direct detection !
down to DM masses of a few MeV
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• To the warm DM limit around keV

• .... requires new technology; sub-eV 
thresholds

• To reach keV mass DM must be able to 
access entire kinetic energy of DM

• mX= 1 keV --> ED = 1 meV 

Even lower masses...

ED ' q2/(2me,N ) q ⇠ mXv

ED =
1

2
mXv2



SC, Super-light DM

• Superconductors!  Cooper 
pairs have ~meV binding 
energies

• Above this threshold 
electrons behave as free 
electrons in Fermi 
degenerate metal

• What can such detectors 
actually observe?

Superconducting Substrate (Al)

Insulating layer

TES (W) 

SuperConducting Bias Rails (Al)

QuasiParticle Collection Pads (Au) 

Design by M. Pyle

(Superconducting Detectors for Super 
Light Dark Matter; Hochberg, Zhao, KZ 

1504.07237)



SC 101
• Superconductors are Fermi 

degenerate metals with a 
small gap due to electron 
pairing

• When deposited energy is 
larger than gap, scattering 
is computed as if electrons 
are free

3

We define two related reference cross sections �̃
DD

, cor-
responding to the light and heavy mediator regimes:

�̃light

DD

=
16⇡↵e↵X

q4
ref

µ2

eX , q
ref

⌘ µeXvX ,

�̃heavy

DD

=
16⇡↵e↵X

m4

�

µ2

eX , (3)

where vX = 10�3. The transition between these regimes
is set by how large the mediator mass is in comparison
to the momentum transfer. The reference momentum
transfer q

ref

above is chosen for convenience as a typical
momentum exchange. Note however that for a light me-
diator, the direct detection cross section is determined by
the minimal momentum transfer in the process, which is
controlled by the energy threshold of the detector.

To establish a notion of the expected number of events,
in Fig. 1 we present the di↵erential rate per kg·year as a
function of deposited energy for several benchmark points
described in the next section. When the mediator is ef-
fectively massless, namely lighter than the momentum
transfer in the scattering, the rate is peaked at ener-
gies near the detector threshold. In contrast, for mas-
sive mediators, the rate is peaked at higher recoil en-
ergies. The reason for the latter behavior is that as the
recoil energy increases, more electrons can be pulled from
deeper in the Fermi sea, resulting in an increased rate.
The mass of the mediator determines the scattering dis-
tribution in phase space, but does not control the size
of the available phase space. A cuto↵ in the di↵eren-
tial rate is evident for both light and heavy mediators,
and depends on the DM mass. For heavier DM (dashed
curves), the maximum energy deposition is determined
by Emax

D = 1

2

me((vF + 2v
esc

)2 � v2F ). When the DM
is lighter (solid curves), the cuto↵ is determined by the
kinetic energy of the DM, namely by µeXv2

esc

/2.
Results. In Fig. 2 we show the 95% expected sensi-

tivity reach after one kg·year exposure, corresponding to
the cross section required to obtain 3.6 signal events [19].
The left (right) panel corresponds to the light (heavy)
mediator regime, where we plot �̃light

DD

(�̃heavy

DD

) as a func-
tion of mX . The black solid [dashed] curve in both panels
corresponds to a sensitivity to measured energies between
1 meV�1 eV [10 meV�10 eV]. For light mediators, the
scattering rate is sensitive to the lowest energy deposi-
tions, resulting in a large improvement in reach when
the detector threshold is decreased. For massive media-
tors, the di↵erential rate peaks towards larger energies,
though with a lower threshold there is more sensitivity
to lighter particles.

The next important question is what range of cross-
sections in Eq. (3) are consistent with astrophysical and
terrestrial constraints on the couplings ↵e and ↵X of � to
electrons and DM.We divide our discussion into light me-
diator and heavy mediator regimes. We begin with a light
mediator, focusing on a kinetically mixed hidden photon

10-4 10-2 1 102
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1
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Recoil energy ED @eVD

dR
êdlo

g 1
0E

D
@yr-

1 k
g-
1 D

Signal rates

FIG. 1: Signal rates per kg·year, for several benchmark points
of (m�,mX ,↵X , ge) = (10 µeV, 10 keV, 5 ⇥ 10�14, 3 ⇥ 10�9)
[solid green], (10 µeV, 100 MeV, 5⇥10�8, 3⇥10�12) [dashed
green], (1 MeV, 10 keV, 0.1, 3 ⇥ 10�6) [solid red], and
(100 MeV, 100 MeV, 0.1, 3 ⇥ 10�5) [dashed blue]. We use
the Fermi energy of aluminum, EF = 11.7 eV. The green [red
and blue] curves correspond to a particular DM mass along
the same-colored curve in the left [right] panel of Fig. 2.

� that obtains its mass via a dark Higgs mechanism, with
✏ the kinetic mixing parameter. Diagonalizing the kinetic
terms and moving to the mass basis, the hidden photon
couples to the electromagnetic current of the SM with
strength ge = e✏. The strongest constraint on this cou-
pling, when m� . 1 keV, comes from cooling in horizon-
tal branch stars and the sun [20, 21]. Depending on the
size of ↵X , either dark Higgstrahlung processes bound
⇠ ↵e↵X , assuming the dark Higgs and DM have similar
charges to �, or direct emission of � bounds ↵e itself.
A bound on ↵X is derived from DM self-interactions—
the bullet-cluster [22–24] along with recent simulations
which reanalyze the constraints from halo shapes [25, 26],
limit the DM self-interacting cross section (at velocities
& 300 km/sec) to be �T /mX ⇠< 1 cm2/g, where we use
the full expressions for (the classical regime of) �T found
e.g. in Ref. [27]. The self-scattering constraint on �T

then places an upper bound on ↵X for a given m� and
mX . Lastly, we check that the DM remains out of ki-
netic equilibrium with the baryons up through the time
of recombination [28].

In the left panel of Fig. 2 we plot the largest allowed
direct detection cross section �̃light

DD

[Eq. (3)] consistent
with all constraints, for a variety of light mediator masses
m� ⇠< eV, shown in solid colored curves. As is evident,
large direct detection cross sections can be obtained de-
spite the severe bounds on the couplings. This is due to
the large enhancement factor in Eq. (3), that scales like
four powers of the inverse of the momentum transfer in
the detection process when the mediator is light. The

Hochberg, Zhao, KZ 1504.07237



Models of Light DM
• Use what we already know about DM

• Not too strongly self-interacting

• Not copiously produced in stars

• Not coupled to baryons at CMB 
epoch

• Not observed in any beam dump 
experiment

sions. Constraints from past experiments and from neu-
trino emission by SN 1987A are presented in Section III.
In Section IV, we describe the five new experimental sce-
narios and estimate the limiting backgrounds. We con-
clude in Section V with a summary of the prospects for
new experiments. More detailed formulas, which we use
to calculate our expected search reaches, and a more de-
tailed discussion of some of the backgrounds, are given
in Appendices A, B, and C .

II. THE PHYSICS OF NEW U(1) VECTORS IN
FIXED TARGET COLLISIONS

A. Theoretical Preliminaries

Consider the Lagrangian

L = L
SM

+ ✏

Y

F

Y,µ⌫

F

0
µ⌫

+
1
4
F

0,µ⌫

F

0
µ⌫

+ m

2

A

0A
0µ

A

0
µ

, (3)

where L
SM

is the Standard Model Lagrangian, F

0
µ⌫

=
@

[µ

A

0
⌫]

, and A

0 is the gauge field of a massive dark U(1)0

gauge group [1]. The second term in (3) is the kinetic
mixing operator, and ✏ ⇠ 10�8 � 10�2 is naturally gen-
erated by loops at any mass scale of heavy fields charged
under both U(1)0 and U(1)

Y

; the lower end of this range
is obtained if one or both U(1)’s are contained in grand-
unified (GUT) groups, since then ✏ is only generated by
two-or three-loop GUT-breaking e↵ects.

A simple way of analyzing the low-energy e↵ects of the
A

0 is to treat kinetic mixing as an insertion of p

2

g

µ⌫

�p

µ

p

⌫

in Feynman diagrams, making it clear that the A

0 couples
to the electromagnetic current of the Standard Model
through the photon. This picture also clarifies, for ex-
ample, that new interactions induced by kinetic mixing
must involve a massive A

0 propagator, and that e↵ects
of mixing with the Z-boson are further suppressed by
1/m

2

Z

. Equivalently, one can redefine the photon field
A

µ ! A

µ+✏A

0µ as in [37], which removes the kinetic mix-
ing term and generates a coupling eA

µ

J

µ

EM

� ✏eA

0
µ

J

µ

EM

of the new gauge boson to electrically charged particles
(here ✏ ⌘ ✏

Y

cos ✓

W

). Note that this does not induce
electromagnetic millicharges for particles charged under
the A

0. The parameters of concern in this paper are ✏

and m

A

0 .
We now explain the orange stripe in Figure 1 — see

[3, 4, 5] for more details. In a supersymmetric theory,
the kinetic mixing operator induces a mixing between
the D-terms associated with U(1)0 and U(1)

Y

. The hy-
percharge D-term gets a vacuum expectation value from
electroweak symmetry breaking and induces a weak-scale
e↵ective Fayet-Iliopoulos term for U(1)0. Consequently,
the Standard Model vacuum can break the U(1)0 in the
presence of light U(1)0-charged degrees of freedom, giving
the A

0 a mass,

m

A

0 ⇠ p✏g

D

p
g

Y

m

W

g

2

, (4)
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�

FIG. 2: A

0 production by bremsstrahlung o↵ an incoming
electron scattering o↵ protons in a target with atomic number
Z.
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FIG. 3: (a) �

⇤ and (b) Bethe-Heitler trident reactions that
comprise the primary QED background to A

0 ! `

+
`

� search
channels.

where g

D

, g

Y

, and g

2

are the the U(1)0, U(1)
Y

, and
Standard Model SU(2)

L

gauge couplings, respectively,
and m

W

is the W-boson mass. Equation (4) relates
✏ and m

A

0 as indicated by the orange stripe in Figure
1 for g

D

⇠ 0.1 � 1. This region is not only theoret-
ically appealing, but also roughly corresponds to the
region in which the annual modulation signal observed
by DAMA/LIBRA can be explained by dark matter,
charged under the U(1)0, scattering inelastically o↵ nuclei
through A

0 exchange. We therefore include these lines for
reference in our plots.

B. A

0 Production in Fixed-Target Collisions

A

0 particles are generated in electron collisions on a
fixed target by a process analogous to ordinary pho-
ton bremsstrahlung, see Figure 2. This can be reli-
ably estimated in the Weizsäcker-Williams approxima-
tion (see Appendix A for more details) [38, 39, 40].
When the incoming electron has energy E

0

, the di↵er-
ential cross-section to produce an A

0 of mass m

A

0 with
energy E

A

0 ⌘ xE

0

is

d�

dxd cos ✓

A

0
⇡ 8Z

2

↵

3

✏

2

E

2

0

x

U

2

Log

⇥

(1� x +

x

2

2
)� x(1� x)m2

A

0

�
E

2

0

x ✓

2

A

0

�

U

2

�
(5)

where Z is the atomic number of the target atoms,
↵ ' 1/137, ✓

A

0 is the angle in the lab frame between the
emitted A

0 and the incoming electron, the Log (⇠ 5� 10

3



Rates & Constraints
• Stellar + Self-interactions

• Most powerful in light mediator regime
4
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FIG. 2: Left: Upper bounds on direct detection cross section for light dark matter scattering o↵ electrons, for very light
mediators. Constraints arise from stellar cooling processes [20, 21], bullet-cluster and halo shapes [22–26], as well as kinetic
decoupling during recombination epoch [28]. Right: Direct detection cross section between light dark matter and electrons,
for several benchmarks of heavy mediators. These are A: m� = 1 MeV, ge = 10�5e, ↵X = 0.1; B: m� = 10 MeV, ge = 10�5e,
↵X = 0.1; and C: m� = 100 MeV, ge = 10�4e, ↵ = 0.1. These depicted parameters obey all terrestrial and astrophysical
constraints, though sub-MeV DM interacting with SM through a massive mediator may be strongly constrained by BBN; see
text for details. The Xenon10 electron-ionization data bounds [34] are plotted in thin dashed gray. In both panels, the black
solid (dashed) curve depicts the sensitivity reach of the proposed superconducting detectors, for a detector sensitivity to recoil
energies between 1 meV�1 eV (10 meV�10 eV), with a kg·year of exposure. For comparison, the gray dot-dashed curve depicts
the expected sensitivity utilizing electron ionization in a germanium target as obtained in Ref. [10].

kink in the colored curves as mX increases arises when
the stellar constraints evolve from cooling dominated by
direct emission of � to the Higgstrahlung process (fac-
toring in self-interaction constraints on ↵X at each mX).
For mediator masses between an eV and ⇠ 10 keV, di-
rect detection cross sections are low on account of stellar
emission constraints. These constraints are released as
the mediators become more massive than the tempera-
ture of the star; supernova constraints instead become
relevant, though trapping removes them for su�ciently
large couplings.

Moving to heavy mediators, we focus on m� ⇠> MeV.
A plethora of constraints exists in the literature for this
mass range, see e.g. [29–32] in the context of kinetically
mixed hidden photons. In the right panel of Fig. 2, we
select several benchmark points, labeled A-C, that sur-
vive all terrestrial (e.g. beam dump) and stellar cooling
constraints, and plot the resulting direct detection cross
section of Eq. (3), �̃heavy

DD

. Large couplings to electrons
ge ⇠> 10�6 are possible despite stellar constraints due
to trapping e↵ects, and beam dump constraints may be
evaded by decaying to additional particles in the dark
sector. These statements hold regardless of the vec-
tor/scalar nature of the heavy mediator. However, for
values of ↵X and ge as large as these benchmark points,
DM and/or the mediator will be brought into thermal
equilibrium with the SM plasma. The chief constraint on
these models is thus BBN and Planck limits on the num-
ber of relativistic species in equilibrium (see e.g. [33]).

The Planck constraints can be evaded; for instance cou-
pling to �/e through the time that the DM becomes
non-relativistic will act to reduce the e↵ective number
of neutrinos at CMB epoch. On the other hand, dur-
ing BBN, the helium fraction constrains the Hubble pa-
rameter, which is sensitive to all thermalized degrees of
freedom. DM must then be either a real scalar or heav-
ier than a few hundred keV in such simple models [33].
It follows that part of the depicted curves of benchmarks
A-C in the low-mass region may not be viable; a detailed
study of the viable parameter space is underway [18]. For
completeness, we show the Xenon10 electron-ionization
bounds [34] in the thin gray dashed curve. (The Xenon10
bounds on light mediators are not depicted in the left
panel of Fig. 2 as they are orders of magnitude weaker
than the parameter space shown.)
For comparison, we show the expected sensitivity using

electron-ionization techniques with a germanium target
as obtained in Ref. [10], translating their result into �̃

DD

of Eq. (3). These results are depicted by the dot-dashed
gray curves in Fig. 2 for both the light (left panel) and
heavy (right panel) mediator cases. For heavy media-
tors and mX larger than a few hundred keV, our de-
tection method is less sensitive than the projected one
using germanium, while for lighter mX , where electron
ionization methods lose sensitivity, the superconducting
devices win. (Indeed, this comparison between the de-
tection methods is our main aim in presenting the right
panel of Fig. 2.) In contrast, light mediators highlight the



Conclusions, Lessons for Future
• Moving beyond the WIMP happens as we move 

beyond the weak scale; if we fail to find new 
physics at weak scale, hunt for DM must 
continue

• Even if weak scale new physics is discovered, 
hunt for DM is not complete

• Leverage development of technology for WIMP 
to broaden searchlight --> natural place to go is 
lighter; Astrophysics and cosmology will 
continue to be crucial companions

• Much work remains to fully explore models



Conclusions, Lessons for Future
• Need systematic, multi-pronged 

approach; probably still too self-limited
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