Neutrinos and Physics beyond the Standard Model

Mu-Chun Chen, University of California at Irvine

DPF 2015, University of Michigan, Ann Arbor, August 7, 2015

14 billion years **Today** Life on earth Acceleration
Dark energy dominates 11 billion years **Solar system forms Star formation peak Galaxy formation era**

CMB

Earliest visible galaxies 700 million years

400,000 years

5,000 years

3 minutes

0.01 ns –

CvB - back to the very first 2 second

operator for v mass

generation unknown

unique window into **GUT** scale physics

Matter domination

Relic radiation decous

Recombination

Onset of gravitational collapse

Nucleosynthesis

Light elements created - D, He, Li **Nuclear fusion begins**

Quark-hadron transition

Protons and neutrons formed

Electroweak tr

LHC Electromagnetic a forces first differentiate

Supersymmetry breaking

Grand unification transition

Electroweak and strong nuclear forces differentiate

Quantum gravity wall

Spacetime description breaks down

conceivable relevance for generation of baryon asymmetry

Where Do We Stand?

Latest 3 neutrino global analysis (including recent results from reactor experiments and T2K):

Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (2013, updated May 2014)

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2 \text{ (NH or IH)}$	7.54	7.32 - 7.80	7.15 - 8.00	6.99 - 8.18
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.08	2.91 - 3.25	2.75 - 3.42	2.59 - 3.59
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (NH)}$	2.43	2.37 - 2.49	2.30 - 2.55	2.23 - 2.61
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (IH)}$	2.38	2.32 - 2.44	2.25 - 2.50	2.19 - 2.56
$\sin^2 \theta_{13}/10^{-2} \text{ (NH)}$	2.34	2.15 - 2.54	1.95 - 2.74	1.76 - 2.95
$\sin^2 \theta_{13}/10^{-2}$ (IH)	2.40	2.18 - 2.59	1.98 - 2.79	1.78 - 2.98
$\sin^2 \theta_{23}/10^{-1} \text{ (NH)}$	4.37	4.14 - 4.70	3.93 - 5.52	3.74 - 6.26
$\sin^2 \theta_{23}/10^{-1}$ (IH)	4.55	4.24 - 5.94	4.00 - 6.20	3.80 - 6.41
δ/π (NH)	1.39	1.12 - 1.77	$0.00-0.16\oplus0.86-2.00$	
δ/π (IH)	1.31	0.98 - 1.60	$0.00-0.02 \oplus 0.70-2.00$	

- \rightarrow evidence of $\theta_{13} \neq 0$
- ⇒hints of $\theta_{23} \neq \pi/4$
- ⇒expectation of Dirac CP phase δ
- → no clear preference for hierarchy
- → Majorana vs Dirac

Recent T2K result $\Rightarrow \delta \simeq -\pi/2$, consistent with global fit best fit value

Where Do We Stand?

- search for absolute mass scale:
 - end point kinematic of tritium beta decays

$$m_{{\cal V}_e} < 2.2 \ {
m eV} \ (95\% \ {
m CL})$$
 Mainz
$$m_{{\cal V}_\mu} < 170 \ {
m keV}$$
 Tritium $\to He^3 + e^- + \overline{\nu}_e$ KATRIN: increase sensitivity \sim 0.2 eV

• neutrinoless double beta decay

current bound:
$$|\langle m \rangle| \equiv \left| \sum_{i=1,2,3} m_i U_{ie}^2 \right| <$$
 (0.14-0.38) eV (EXO, 2012)

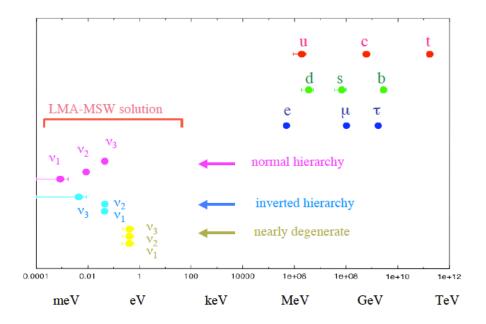
• Cosmology $\sum (m_{v_i}) < 0.49 \text{ eV}$

N_{eff} = 3.04 ± 0.2 [Plankck 2015] ⇒ sterile neutrino disfavored

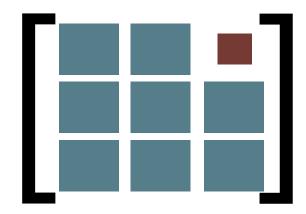
Open Questions - Neutrino Properties

- Majorana vs Dirac?
- CP violation in lepton sector?
- Absolute mass scale of neutrinos?
- Θ Precision: $\theta_{23} > \pi/4$, $\theta_{23} < \pi/4$, $\theta_{23} = \pi/4$?
- Sterile neutrino(s)?

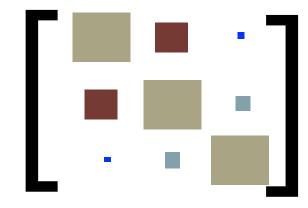
a suite of current and upcoming experiments to address these puzzles


some can only be answered by oscillation experiments

Open Questions - Theoretical

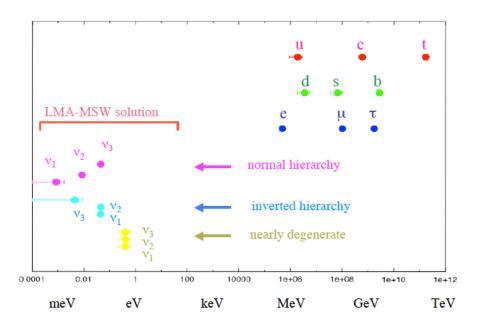


Smallness of neutrino mass:

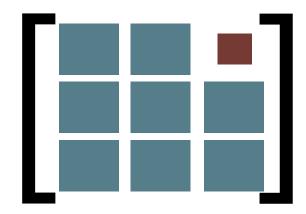


Flavor structure:

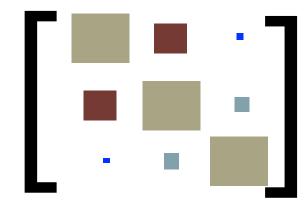
leptonic mixing


quark mixing

Open Questions - Theoretical


Smallness of neutrino mass:

 $m_V \ll m_{e, u, d}$



Fermion mass and hierarchy problem → Many free parameters in the Yukawa sector of SM

Flavor structure:

leptonic mixing

quark mixing

Smallness of neutrino masses

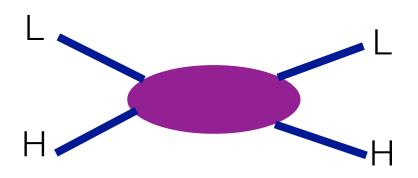
What is the operator for neutrino mass generation?

- Majorana vs Dirac
- scale of the operator
- suppression mechanism

Neutrino Mass beyond the SM

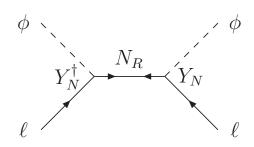
SM: effective low energy theory

$$\mathcal{L} = \mathcal{L}_{\scriptscriptstyle \mathrm{SM}} + \boxed{rac{\mathcal{O}_{5D}}{M} + rac{\mathcal{O}_{6D}}{M^2} + ...}$$
 new physics effects


only one dim-5 operator: most sensitive to high scale physics

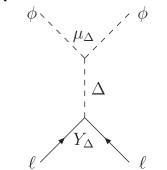
$$rac{\lambda_{ij}}{M}HHL_{i}L_{j}$$
 \Rightarrow $m_{
u}=\lambda_{ij}rac{v^{2}}{M}$ Weinberg, 1979

- $m_v \sim (\Delta m^2_{atm})^{1/2} \sim 0.1$ eV with $v \sim 100$ GeV, $\lambda \sim O(1) \Rightarrow M \sim 10^{14}$ GeV
- Lepton number violation ⇒ Majorana fermions



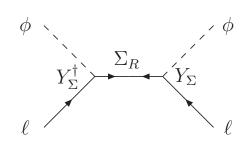
Neutrino Mass beyond the SM

3 possible portals


Type-I seesaw

 N_R : SU(3)_c x SU(2)_w x U(1)_Y ~(1,1,0)

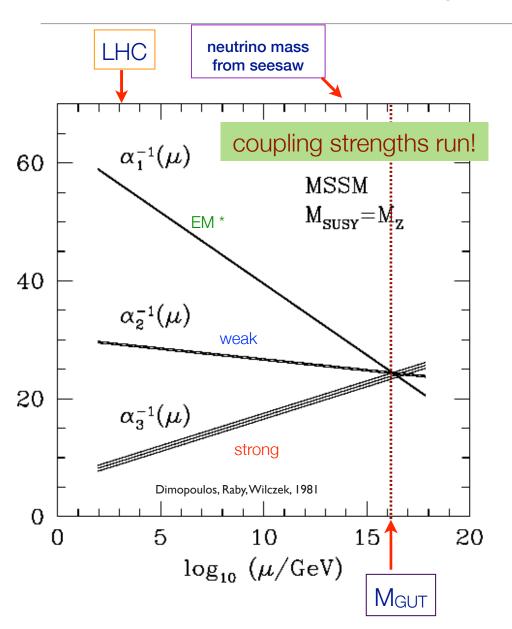
Minkowski, 1977; Yanagida, 1979; Glashow, 1979; Gell-mann, Ramond, Slansky,1979; Mohapatra, Senjanovic, 1979;


Type-II seesaw

 Δ : SU(3)_c x SU(2)_w x U(1)_Y ~(1,3,2)

Lazarides, 1980; Mohapatra, Senjanovic, 1980

Type-III seesaw



$$\Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$$

 Σ_R : SU(3)_c x SU(2)_w x U(1)_Y ~(1,3,0)

Foot, Lew, He, Joshi, 1989; Ma, 1998

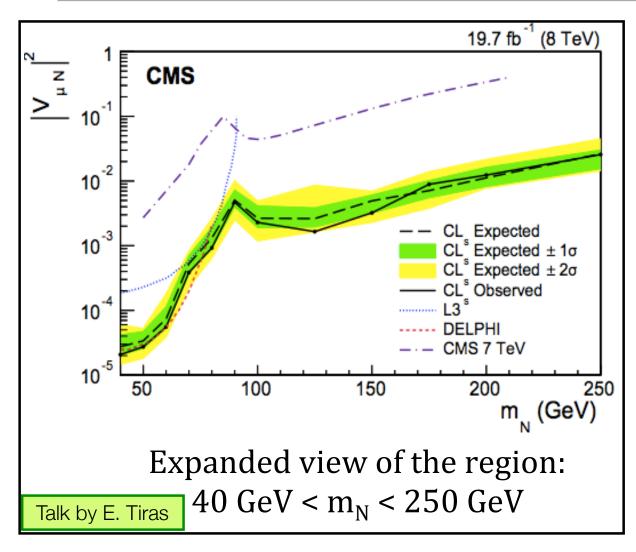
Grand Unification Naturally Accommodates Seesaw

- \odot origin of the heavy scale \Rightarrow U(1)_{B-L}
- exotic mediators ⇒ predicted in many GUT theories, e.g. SO(10)

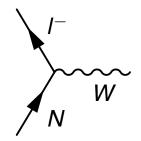
exotic mediators in Type II, III: not easy to get in string theories

Dienes, March-Russell (1996)

Low Scale Seesaws


New particles:

- Type I seesaw: generally decouple from collider experiments
- Type II seesaw: $\Delta^{++} \rightarrow e^+ e^+$, $\mu^+ \mu^+$, $\tau^+ \tau^+$
- Type III seesaw: observable displaced vertex Franceschino, Hambye, Strumia, 2008
- inverse seesaw: non-unitarity effects
- radiative mass generation: model dependent singly/doubly charged SU(2) singlet, even colored scalars in loops


New interactions:

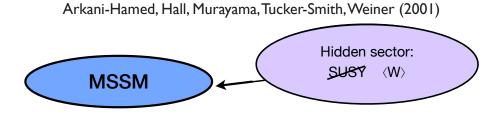
- LR symmetric model: W_R
- R parity violation: $\tan^2\theta_{\rm atm} \simeq \frac{BR(\tilde{\chi}^0_1 \to \mu^\pm W^\mp)}{BR(\tilde{\chi}^0_1 \to \tau^\pm W^\mp)}$ Mukhopadhyaya, Roy, Vissani, 1998
- •

Cautions!!! Is it really the v_R in Type I seesaw?

RH neutrino production thru active-sterile mixing:

$$\propto V = \frac{m_D}{M_R} \sim \frac{10^{-4} \text{ GeV}}{100 \text{ GeV}} = 10^{-6}$$

RH neutrino relevant for v mass generation


$$|V_{uN}|^2 = 10^{-12}$$

unless extremely fine-tuned

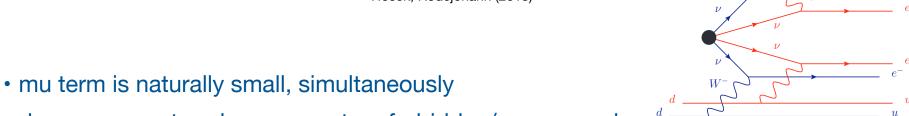
Dirac Neutrinos and SUSY Breaking

- naturally small Dirac neutrino masses can arise
 - Randall-Sundrum model
 - Supersymmetry breaking
- before SUSY breaking: absence of Dirac neutrino masses (as well as Weinberg operator)
- after SUSY breaking: realistic effective Dirac neutrino masses generated

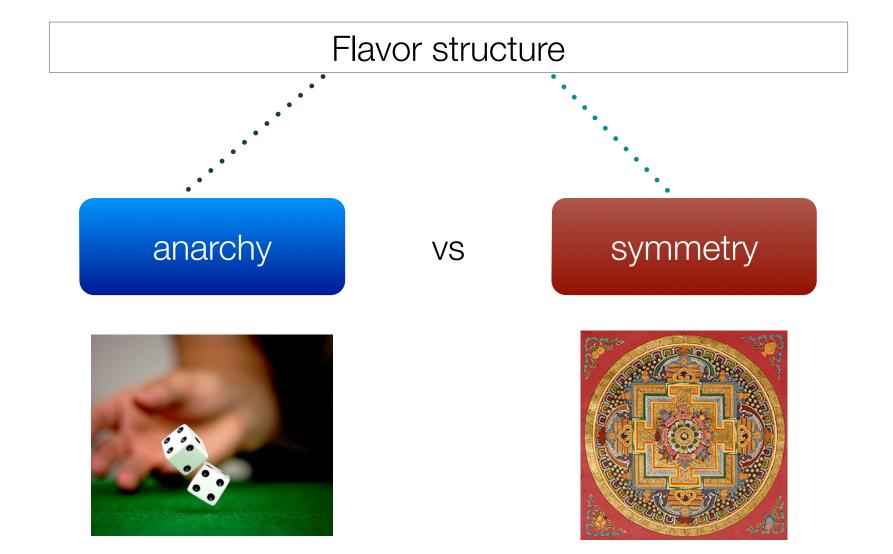
$$Y_{\nu} \sim \frac{m_{3/2}}{M_{\rm P}} \sim \frac{\mu}{M_{\rm P}}$$

similar to the Giudice-Masiero Mechanism for the mu problem

Giudice, Masiero (1988)


$$\mu \sim \langle \mathcal{W} \rangle / M_{\rm P}^2 \sim m_{3/2}$$

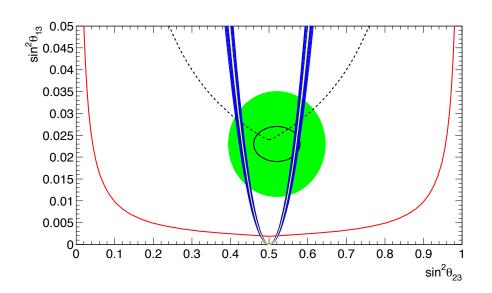
Need a symmetry reason for the absence of these operators before SUSY breaking


Dirac Neutrinos and SUSY Breaking

- Simultaneous realization of these two scenarios can arise in MSSM with discrete R symmetries, \mathbb{Z}_M^R M.-C. C., M. Ratz, C. Staudt, P. Vaudrevange (2012)
 - neutrinos are of the Dirac type, with naturally small masses
 - $ightharpoonup \Delta L = 2$ operators forbidden to all orders \Rightarrow no neutrinoless double beta decay
 - New signature: lepton number violation ΔL = 4 operators, (v_R)⁴, allowed ⇒ M.-C. C., M. Ratz, C. Staudt, P. Vaudrevange (2012) new LNV processes, e.g.
 - neutrinoless quadruple beta decay

Heeck, Rodejohann (2013)

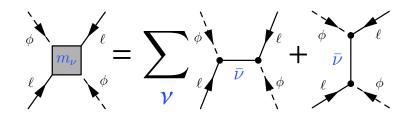
- · dangerous proton decay operators forbidden/suppressed
- may simultaneously explain the flavor structure with discrete generation dependent R symmetries (even with non-Abelian!) M.-C.C., M. Ratz, A. Trautner (2013)
- Dynamical generation of RPV operators with size predicted M.-C.C., M. Ratz, V. Takhistov (2014)



Anarchy

Hall, Murayama, Weiner (2000); de Gouvea, Murayama (2003)

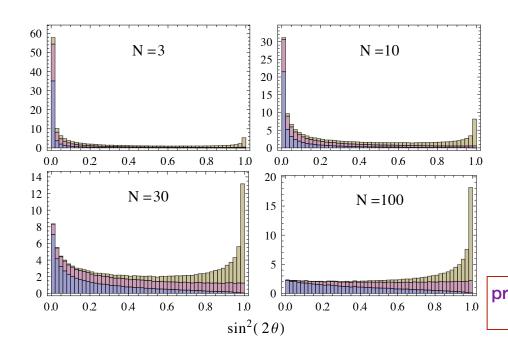
- there are no parametrically small numbers
- large mixing angle, near mass degeneracy statistically preferred

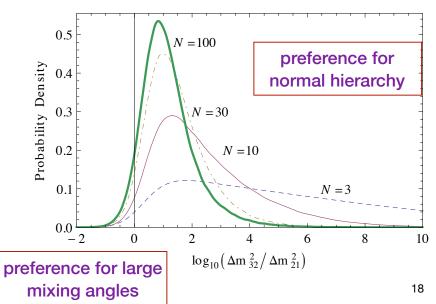

de Gouvea, Murayama (2012)

- UV theory prediction can resemble anarchy
 - warped extra dimensions
 - heterotic string theory

Expectations from Heterotic String Theories

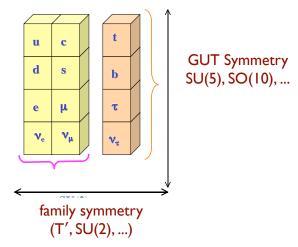
heterotic string models: O(100) RH neutrinos


Buchmüller, Hamaguchi, Lebedev, Ramos-Sánchez, Ratz (2007)



$$m_{\nu} \sim \frac{v^2}{M_*} M_* \sim \frac{M_{\text{GUT}}}{10...100}$$

statistical expectations with large N (= # of RH neutrinos)


Feldstein, Klemm (2012)

Origin of Flavor Mixing and Mass Hierarchy

- Several models have been constructed based on
 - GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry G_F
- Family Symmetries G_F based on continuous groups:
 - U(1)
 - SU(2)
 - SU(3)

- Recently, models based on discrete family symmetry groups have been constructed
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S₄ (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - ∆27
 - Q₆

Tri-bimaximal Neutrino Mixing

Latest Global Fit (3σ)

$$\sin^2 \theta_{23} = 0.437 \ (0.374 - 0.626) \ \ \ [\Theta^{\text{lep}}_{23} \sim 41.2^{\circ}]$$

$$\sin^2 \theta_{12} = 0.308 (0.259 - 0.359)$$
 [$\Theta^{\text{lep}}_{12} \sim 33.7^{\circ}$]

 Tri-bimaximal Mixing Pattern Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix} \qquad \sin^2 \theta_{\text{atm, TBM}} = 1/2 \qquad \sin^2 \theta_{\odot, \text{TBM}} = 1/3$$
$$\sin \theta_{13, \text{TBM}} = 0.$$

- Leading Order: TBM (from symmetry) + higher order corrections/contributions
- More importantly, corrections to the kinetic terms Leurer, Nir, Seiberg (1993);

Dudas, Pokorski, Savoy (1995)

M.-C.C, M. Fallbacher, M. Ratz, C. Staudt, (2012)

Symmetry Relations

Quark Mixing

Lepton Mixing

mixing parameters	best fit	3σ range
θ^{q}_{23}	2.36°	2.25° - 2.48°
θ^{q}_{12}	12.88°	12.75° - 13.01°
θ^{q}_{13}	0.21°	0.17° - 0.25°

mixing parameters	best fit	3σ range
θ ^e 23	41.2°	35.1° - 52.6°
θ ^e ₁₂	33.6°	30.6° - 36.8°
θ ^e 13	8.9°	7.5° -10.2°

• QLC-I

$$\theta_c + \theta_{sol} \approx 45^\circ$$

Raidal, '04; Smirnov, Minakata, '04

(BM)

$$\theta^{q}_{23} + \theta^{e}_{23} \cong 45^{\circ}$$

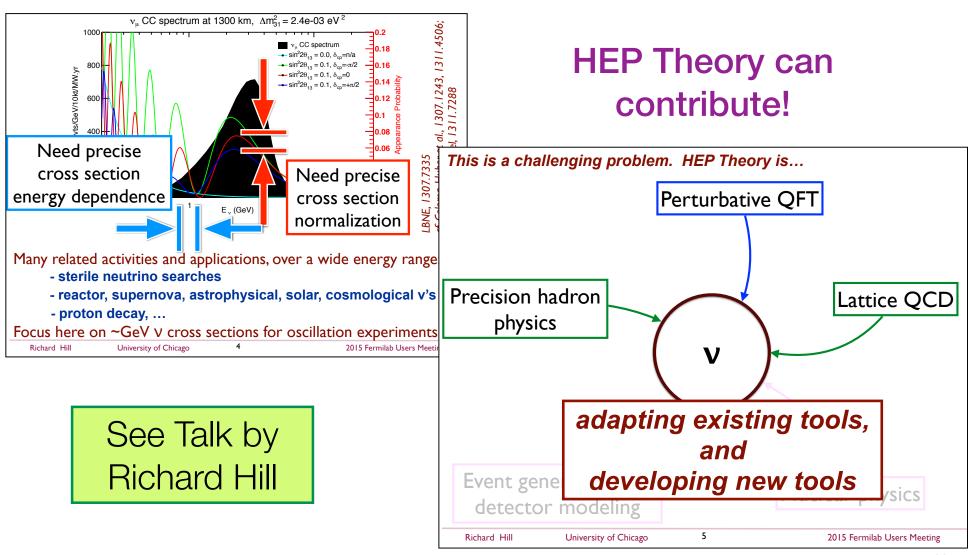
slight inconsistent

• QLC-II

$$tan^2\theta_{sol} \approx tan^2\theta_{sol,TBM} + (\theta_c/2) * cos \delta_e$$

Ferrandis, Pakvasa; Dutta, Mimura; M.-C.C., Mahanthappa

(TBM)


$$\theta^{e}_{13} \cong \theta_{c}/3\sqrt{2}$$

testing symmetry relations: a more robust way to distinguish different classes

of models

measuring leptonic mixing parameters to the precision of those in quark sector

Aside: Precision Cross Section

Origin of CP Violation

CP violation ⇔ complex mass matrices

$$\overline{U}_{R,i}(M_u)_{ij}Q_{L,j} + \overline{Q}_{L,j}(M_u^{\dagger})_{ji}U_{R,i} \xrightarrow{\mathfrak{CP}} \overline{Q}_{L,j}(M_u)_{ij}U_{R,i} + \overline{U}_{R,i}(M_u)_{ij}^*Q_{L,j}$$

- Conventionally, CPV arises in two ways:
 - Explicit CP violation: complex Yukawa coupling constants Y
- Y

 e_L

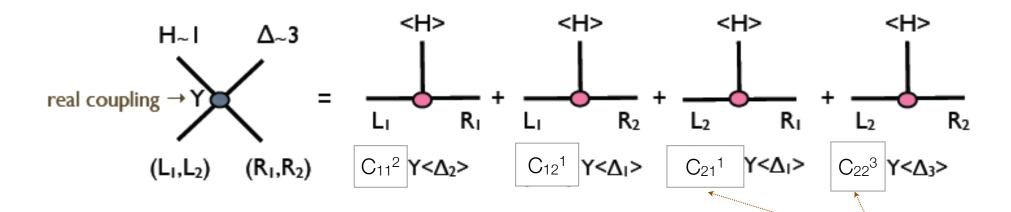
 e_R

 e_R

- Spontaneous CP violation: complex scalar VEVs <h>
- Complex CG coefficients in certain discrete groups ⇒ explicit CP violation
 - CPV in quark and lepton sectors purely from complex CG coefficients

CG coefficients in non-Abelian discrete symmetries

⇒ relative strengths and phases in entries of Yukawa matrices


⇒ mixing angles and phases (and mass hierarchy)

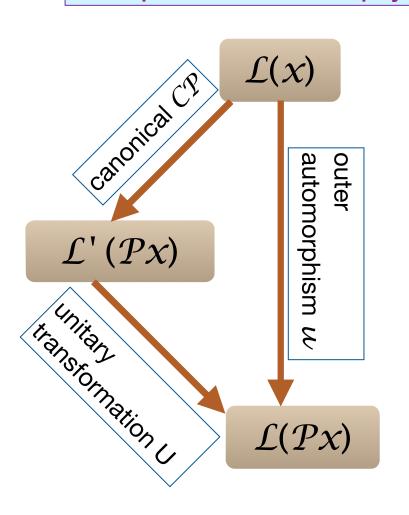
Group Theoretical Origin of CP Violation

M.-C.C., K.T. Mahanthappa Phys. Lett. B681, 444 (2009)

Basic idea

Discrete symmetry **G**

- Scalar potential: if Z_3 symmetric $\Rightarrow \langle \Delta_1 \rangle = \langle \Delta_2 \rangle = \langle \Delta_3 \rangle \equiv \langle \Delta \rangle$ real
- Complex effective mass matrix: phases determined by group theory


C_{ij}^k: complex CG coefficients of **G**

$$M = \begin{pmatrix} C_{11}^2 & C_{21}^1 \\ C_{12}^1 & C_{22}^3 \end{pmatrix} Y \langle \Delta \rangle$$

Group Theoretical Origin of CP Violation

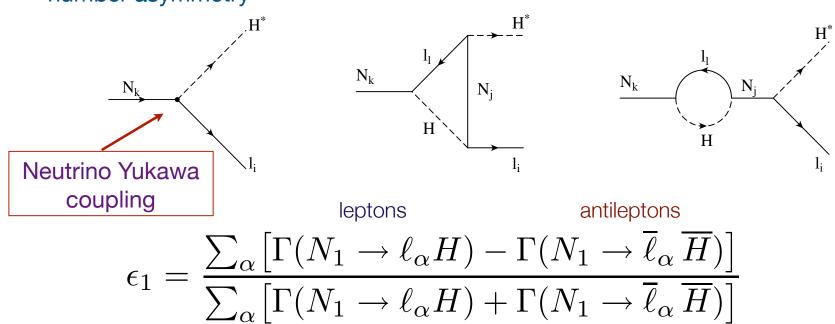
M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

complex CGs G and physical CP transformations do not commute

$$\Phi(x) \quad \stackrel{\widetilde{\mathcal{CP}}}{\longmapsto} \quad U_{\operatorname{CP}} \, \Phi^*(\ \mathcal{P} \ x)$$

$$\rho_{\boldsymbol{r}_i}(\boldsymbol{u}(g)) = \boldsymbol{U}_{\boldsymbol{r}_i} \rho_{\boldsymbol{r}_i}(g)^* \boldsymbol{U}_{\boldsymbol{r}_i}^{\dagger} \quad \forall g \in G \text{ and } \forall i$$

u has to be a class-inverting,involuntory automorphism of G

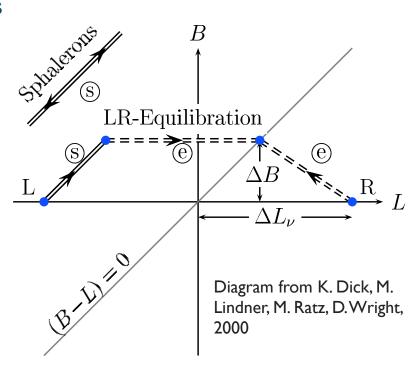

- non-existence of such automorphism in certain groups
- explicit physical CP violation in generic setting

examples: T_7 , $\Delta(27)$,

Cosmological Connection

Standard Leptogenesis

- RH heavy neutrino decay:
 - quantum interference of tree-level & one-loop diagrams ⇒ primordial lepton number asymmetry ΔL



Leptonic CP violation $\Rightarrow \Delta L \propto \left[\Gamma(N_1 \to \ell_{\alpha} H) - \Gamma(N_1 \to \overline{\ell}_{\alpha} \overline{H})\right] \neq 0$

K. Dick, M. Lindner, M. Ratz, D. Wright, 2000; H. Murayama, A. Pierce, 2002

- Leptogenesis possible even when neutrinos are Dirac particles (no $\Delta L = 2$ violation)
- Characteristics of Sphaleron effects:
 - only left-handed fields couple to sphalerons
 - sphalerons change (B+L) but not (B-L)
 - sphaleron effects in equilibrium for T > Tew

late time LR equilibration of neutrinos making Dirac
 leptogenesis possible with primordial ΔL = 0

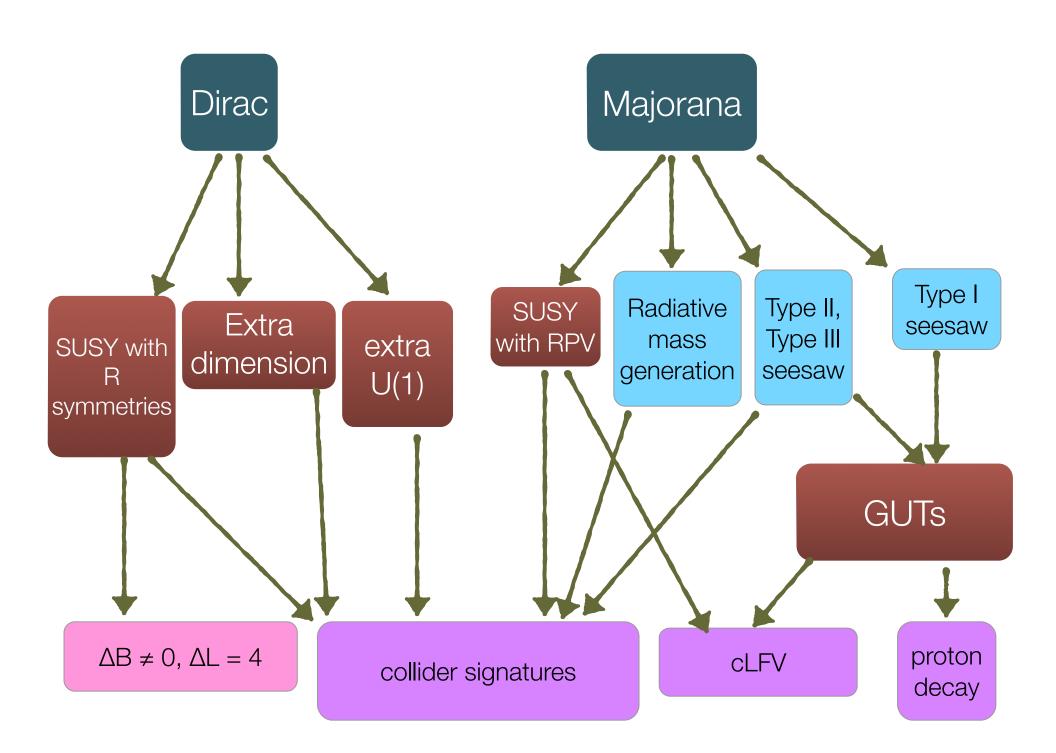
Recent progress in Leptogenesis

Toward the Theory of Leptogenesis:

Buchmuller, Fredenhagen, 2000; Simone, Riotto 2007; Lindner, Muller 2007

Classical Boltzmann Equations 1

Quantum Boltzmann Equations


(Closed-time-path formulation for non-equilibrium QFT)

Schwinger, 1961; Mahanthappa, 1962; Bakshi, Mahanthappa, 1963; Keldysh, 1965

Lots of progress, both quantitatively and qualitatively; still too early to see how big the impacts are

Conclusions

- Fundamental origin of fermion mass hierarchy and flavor mixing still not known
- Neutrino masses: evidence of physics beyond the SM
- Symmetries: can provide an understanding of the pattern of fermion masses and mixing
 - correlations, correlations:
 - quark & lepton mixing parameters
 - lepton flavor violating charged lepton decays
 - proton (nucleon) decay, neutron-antineutron oscillation

