The State of Dark Energy in 2015

David Schlegel, Berkeley Lab DPF, 6 Aug 2015

Outline:

- 1. Observing inflation + dark energy
- 2. BAO experiments
- 3. CMB experiments
- 4. Future experiments

Dark Energy

An observational question: Has the Dark Energy Tooth Fairy come once or twice?

1st Age of Dark Energy

 $t \sim 10^{-35} sec$

Phase of accelerating expansion dubbed "inflation"

"Dynamic", because it turned off

Imprinted density fluctuations + grav. waves

An observational question: Has the Dark Energy Tooth Fairy come once or twice?

1st Age of Dark Energy

 $t \sim 10^{-35} sec$

Phase of accelerating expansion dubbed "inflation" "Dynamic", because it turned off

Imprinted density fluctuations + grav. waves

2nd Age of Dark Energy

t ~ now

Phase of accelerating expansion dubbed "dark energy" Observable at t > 2 billion years, possibly dynamic

Timeline of Dark Energy

Toolset for Dark Energy are geometrical measures

Measurements that are per-object:
supernovae
Measurements that are statistical:
features + scales in density maps (galaxies, CMB)
All imply extra volume between us and high redshift

Baryon Acoustic Oscillations (BAO) standard ruler at 147 Mpc

BAO imprinted in the microwave background at z=1100 ... and forever more in galaxy maps

Baryon Acoustic Oscillations (BAO) standard ruler at 147 Mpc

BAO imprinted in the microwave background at z=1100 ... and forever more in galaxy maps

Large volumes required to sample BAO scale at 147 Mpc

3-d maps measure more modes than 2-d maps Higher redshifts have more volume

Baryon Oscillation Spectroscopic Survey (BOSS) Most capable instrument today for mapping the Universe

Fully automated spectral reductions 360-1000 nm coverage for all targets Automated classifications, >98% for galaxies

BOSS completed main survey, April 2014 1.5 million galaxies + 160,000 Lyman-alpha quasars

Four distinct BAO measures in BOSS Data Release 11

- LOWZ galaxies at z=0.32
- CMASS galaxies at z=0.57
- Lyman-alpha forest auto-correlation at z=2.3
- Lyman-alpha + Quasar cross-correlation at z=2.3

BAO as a ruler measures the expansion history, even with no physical scale

BAO measured near its cosmic variance limit at z=0 → z=0.7 Future improvement can only be ~2X better there BAO at z > 0.7 nowhere near cosmic variance limit

Dark energy is needed to explain galaxy+quasar BAO

Angular acoustic scale of the CMB is put on the same system with simple assumptions about recombination era

One standard ruler from $z=1100 \rightarrow z=0.1$

Aubourg et al 2014

Dark energy need not be dynamic to explain the data today $w_0=-1$, $w_a=0$, equivalent to a cosmological constant

Inflation

Toolset for Inflation?

Matter fluctuations
Primordial fluctuation power spectrum (n₅)
Non-gaussianities
Flatness (Ωκ)
Gravitational wave background
Direct measure of grav. waves
Imprinted grav. waves as B-modes in CMB

Most inflation-era measures are upper limits

- Spatial curvature ($\Omega_{\rm K}$) is flat to <0.5%
- Non-gaussianities (f_{NL}) are not detected
- Primordial fluctuations are adiabatic (growing mode), not isocurvature

At least one inflation-era measure is measured!

Primordial fluctuation spectrum (n_s) is not scale-free

CMB + BAO Planck Collaboration 2015

At least one inflation-era measure was incorrect

Indirect measure of grav. waves imprinted on CMB B-modes

At least one inflation-era measure was incorrect

The signal was real Sourced from dust in the Milky Way Mis-interpreted as grav. waves imprinted upon CMB

Future Experiments

Final results from BOSS in prep.

Uses final Data Release 12, which was made public Jan 2015

Statistical power increases with # of modes

Cosmic variance limit for BAO only reached at z<0.7 & z=1100 More modes at smaller scales

Galaxy + CMB lensing will sample integral of density fields

Future BAO experiments will sample z > 0.7

eBOSS, HETDEX, DESI, PFS, Euclid

BOSS sampled a volume of 5 h⁻³Gpc³

DESI will sample a volume >50 h⁻³Gpc³

Redshift surveys increasing exponentially in size Large enough for BAO starting in 2005

Redshift surveys increasing exponentially in size Large enough for BAO starting in 2005

Future CMB experiments racing to detect B-modes

BICEP2/Keck/BICEP3, ACTPol, SPTPol, Polarbear/Simons Array SPIDER, EBEX

Summary

- BAO measured expansion history from z=0.1->1100
- Dark energy consistent with a cosmological constant
- Future experiments will be dramatically larger, esp. at z>0.7

450 million light years

- Inflation-era primordial fluctuations definitively measured, and not scale-free
- Inflation era non-gaussianities not detected
- No detection yet of primordial gravitational waves, but future CMB B-mode experiments racing to measure